Плоскость, параллельная плоскости основания правильной четырехугольной пирамиды, делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды. Апофема полученной усеченной пирамиды равна 6, а площадь ее боковой грани равна 48. Найди высоту полной пирамиды.
1) в первой четверти
sin - монотонно возрастает, cos - монотонно убывает
во второй четверти
синус монотонно убывает, косинус тоже монотонно убывает.
в третьей четверти
синус монотонно убывает, косинус монотонно возрастает
в четвертой четверти
синус монотонно возрастает, косинус монотонно возраствет.
2)
Данное выражение имеет смысл когда подкоренное выражение неотрицательно, то есть:
cos(x)-√3/2≥0
cos(x)≥√3/2
x≥π/6+2πk,k∈Z
x≥-π/6 +2πn, n∈Z
Если нарисовать единичную окружность и отметить точки -π/6, 0, π/6, π/2, то легко заметить, что -π/6 не входит в данный промежуток.
ответ: 0≤x≤π/6
1) в первой четверти
sin - монотонно возрастает, cos - монотонно убывает
во второй четверти
синус монотонно убывает, косинус тоже монотонно убывает.
в третьей четверти
синус монотонно убывает, косинус монотонно возрастает
в четвертой четверти
синус монотонно возрастает, косинус монотонно возраствет.
2)
Данное выражение имеет смысл когда подкоренное выражение неотрицательно, то есть:
cos(x)-√3/2≥0
cos(x)≥√3/2
x≥π/6+2πk,k∈Z
x≥-π/6 +2πn, n∈Z
Если нарисовать единичную окружность и отметить точки -π/6, 0, π/6, π/2, то легко заметить, что -π/6 не входит в данный промежуток.
ответ: 0≤x≤π/6
ответ: Верхнее основание 3см
Объяснение: так как углы при основании составляют 45° каждый, то они находятся у нижнего основания и эта это трапеция равнобедренная. Обозначим основание, которое нужно найти -х. Проведём к нижнему основанию высоту с двух вершин верхнего основания. Получился прямоугольный треугольник с углом 45°. Если в прямоугольном треугольнике один угол равен 45° то второй тоже будет 45°, их чего следует,что этот треугольник равнобедренный, и высота равна отрезку при основании. Две высоты, проведённые к нижнему основанию отсекают в нём посередине часть отрезка равную верхнему основанию. Так как трапеция равнобедренная, то отрезки образующиеся на нижнем основании, расположенные по бокам от отрезка равного верхнему основанию, будут равны между собой и их сумма будет составлять 7-х т.е. мы от нижнего основания вычитаем верхнее. Обозначим каждый такой отрезок как (7-х)÷2. Так как мы выяснили, что в прямоугольном треугольнике высота и этот отрезок равны, тогда каждый тоже будет (7-х)÷2. Составляем уравнение:
(7-х)÷2× (7+х)÷2=10
(49-х^)÷4=10
49-х^=40
-х^=40-49
-х^= -9
х^=9
х=3
(7-х)÷2 - это высота; (7+х)÷2- это полусумма двух оснований; 10- это площадь трапеции. Площадь трапеции равна полусумме оснований умноженная на высоту, и на основе этой формулы мы составили уравнение.
Верхнее основание 3.
Мы можем также найти высоту, зная х:
Так как высота равна (7-х)÷2, то
(7-3)÷2=4÷2=2. Высота трапеции 2
Галочки вверху над х^ - читайте как Х в КВАДРАТЕ