Плоскость пересекает сферу.диаметр сферы,проведенный в одну точку из точек линии пересечения сферы и плоскости,равен 6√3 см и образует с плоскостью угол 60 градусов.расстояние от центра сферы до плоскости сечения
Дано: ABCA1B1C1 - правильная треугольная призvf AB=8см AA1=6см Найти S сеч. -? Решение: 1)Построим сечение: (B1C1 - (это сторона верхнего основания), А - ( это противолежащая вершина)) Проводим B1A в (AA1B1B) Проводим АС1 в (АА1С1С) В1С1А - искомое сечение, равнобедренный треугольник, т.к B1A =АС1 2)по теореме Пифагора из треугольника AA1B1 - прямоугольного: B1A^2 = AA1^2+A1B1^2 отсюда: B1A^2= 36+64=100 B1A=10 3) по формуле: S=√p(p-a)(p-b)(p-c) S=√14*4*4*6=8√21 ответ:8√21 или можно найти высоту АН сечения, она равна 2√21 и потом находим S=a*h/2 S=8*2√21/2=8√21
ABCA1B1C1 - правильная треугольная призvf
AB=8см
AA1=6см
Найти S сеч. -?
Решение:
1)Построим сечение:
(B1C1 - (это сторона верхнего основания), А - ( это противолежащая вершина))
Проводим B1A в (AA1B1B)
Проводим АС1 в (АА1С1С)
В1С1А - искомое сечение, равнобедренный треугольник, т.к B1A =АС1
2)по теореме Пифагора из треугольника AA1B1 - прямоугольного:
B1A^2 = AA1^2+A1B1^2
отсюда:
B1A^2= 36+64=100
B1A=10
3) по формуле:
S=√p(p-a)(p-b)(p-c)
S=√14*4*4*6=8√21
ответ:8√21
или можно найти высоту АН сечения, она равна 2√21
и потом находим S=a*h/2
S=8*2√21/2=8√21
В треугольнике ABC O - центр описанной окружности.
∠ABO равен 19°,
а ∠CAO равен 38°.
Найдите угол BOC. ответ дайте в градусах.
Сделаем рисунок и построим последовательно все указанные в задаче углы.
По условию ∠ АВО=19°.
Соединив вершину А с центром О окружности,
получим равнобедренный треугольник АОВ с углами при основании АВ, равными 19°.
По условию ∠ САО = 38°, следоветльно, ∠ ВАС =19°+38°=57°.
Вписанный угол равен половине центрального, опирающегося на ту же дугу.
∠ ВАС - вписанный,
∠ ВОС - центральный угол, опирающийся на ту же дугу, что и ∠ ВАС.
∠ВОС= 2∠ВАС= 2·57° =114°