Плоскости , A, B. Расстояние от точки А до прямой пересечения плоскостей α и β – 12 см, а от точки В до этой же прямой – 4 см. Найдите длину отрезка АВ, если расстояние между основаниями перпендикуляров, опущенных с точек А и В на прямую пересечения плоскостей α и β, равно 3 см.
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины AB и AC:
используем формулу:
находим координаты точки K:
теперь определим вид треугольника для этого используем теорему косинусов:
для начала найдем длину BC:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
подставим значения:
cosB<0 поэтому угол тупой и треугольник тупоугольный
ответ: треугольник тупоугольный
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины AB и AC:
используем формулу:
находим координаты точки K:
теперь определим вид треугольника для этого используем теорему косинусов:
для начала найдем длину BC:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
подставим значения:
cosB<0 поэтому угол тупой и треугольник тупоугольный
ответ: треугольник тупоугольный