Плоскости а и в пересекаются по прямой с. Через точку М, лежащую на прямой с, в плоскости а проведен отрезок МА. Найдите расстояние от точки А до прямой с, если угол между данными плоскостями равен 30°, а отрезок МА имеет длину 8√2 см и составляет с плоскостью в угол 45°
Несколько теорем к решению данной задачи :
1. В равнобедренном тр-нике боковые стороны равны;
2. Высота в равнобедренном тр-ке делит основание пополам.
3) Теорема Пифагора.
Дано: АВС - равноб.тр-ник
АВ = ВС = 17см
ВН (высота) = 8см
Найти: АС
ВН делит основание на отрезки АН и НС; АН=НС
Рассмотрим треугольник АВН
АВ -гипотенуза, ВН и АН - катеты.
АВН -прямоугольный тр-ник
По т. Пифагора определим АН
АН = YAB^2 - BH^2
AH = Y 17^2 - 8^2 = Y 289 - 64 = Y225 = 15
AC = 2*15 = 30
ответ: АС = 30 см.
Несколько теорем к решению данной задачи :
1. В равнобедренном тр-нике боковые стороны равны;
2. Высота в равнобедренном тр-ке делит основание пополам.
3) Теорема Пифагора.
Дано: АВС - равноб.тр-ник
АВ = ВС = 17см
ВН (высота) = 8см
Найти: АС
ВН делит основание на отрезки АН и НС; АН=НС
Рассмотрим треугольник АВН
АВ -гипотенуза, ВН и АН - катеты.
АВН -прямоугольный тр-ник
По т. Пифагора определим АН
АН = YAB^2 - BH^2
AH = Y 17^2 - 8^2 = Y 289 - 64 = Y225 = 15
AC = 2*15 = 30
ответ: АС = 30 см.