Плоскости α и β параллельны. Прямая a пересекается с плоскостями α и β в точках A и A1, прямая b пересекается с плоскостями α и β в точках B и B1 соответственно. Известно, что a ∩ b = O, AO = 6, A1O = 4, A1B1 = 5. Определи длину отрезка AB.
Если считать плотности одинаковыми, тогда арбузы отличаются только по объему, от коего и зависит масса. так. как объем - это кубическая (третьей степени) величина от радиуса(диаметра), то увеличение диаметра в 3 раза ведет увеличение объема в 3*3*3=27 раз. Соответственно и масса больше в 27 раз.
С точки зрения здравого смысла задача бессмысленна. Если спелый нормальный арбуз - масса хотя бы 3 кг, тогда другой 81 кг. Ого! А если другой - 27 кг (тоже ого!), тогда первый - всего 1 кг. Тогда он , вероятнее всего, зеленый, плотности разные, соответственно и диаметры отличаются не в 3 раза. Хотя составителям задачи что только не приснится в пьяном угаре
так. как объем - это кубическая (третьей степени) величина от радиуса(диаметра), то увеличение диаметра в 3 раза ведет увеличение объема в 3*3*3=27 раз.
Соответственно и масса больше в 27 раз.
С точки зрения здравого смысла задача бессмысленна. Если спелый нормальный арбуз - масса хотя бы 3 кг, тогда другой 81 кг. Ого! А если другой - 27 кг (тоже ого!), тогда первый - всего 1 кг. Тогда он , вероятнее всего, зеленый, плотности разные, соответственно и диаметры отличаются не в 3 раза.
Хотя составителям задачи что только не приснится в пьяном угаре
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².