Плоскости α и β параллельны. Точка М не лежит между плоскостями α и β. Прямые а, в проходят через точку М и пересекают плоскости α и β соответственно в точках А1, В1 и А2, В2. МА1 А1В1 = 23 , А1А2 равно 10 м. Найдите В1В2. Дайте ответ и рисунок если можно
1) если в основании прямоугольник со сторонами а и в, площадь боковой поверхности равна 2(a + b) * c = 2 *10 * 3 = 60 /см²/; площадь полной поверхности = S(бок) + 2S(осн) = 60 + 2 *6 * 4 = 60 + 48 = 108/ см²/
2) Если в основании прямоугольник со сторонами а и с, то площадь боковой пов. равна 2(a + с) * в=2*9*4=72/см²/ ; площадь полной поверхности = S(бок) + 2S(осн) 72+2*6*3=108/см²/,
3) если в основании прямоугольник со сторонами в и с, площадь боковой поверхности равна 2(в + с) * а = 2 * 7 * 6= 84/см²/; площадь полной поверхности = S(бок) + 2S(осн) = 84 + 2 *4 *3 = 84 + 24 = 108/ см²/
Конечно, площадь полной поверхности не менялась оттого, что мы меняли основания.
Надеюсь решила, правильно)
Решение: точка О - центр вписанной окружности радиусом r
Точка F - основание высоты равнобедренного треугольника на стороне ac
из точки Е на стороне ab - высоту треугольника abO. ее длинна равна r
Треугольники abF и ebO - подобны по двум углам.
Пропорция Fb/ab = eb/Ob
Fb=Ob+FO=15+r
ab=30
Ob = 15
(15+r)/30 = / 15
После приведения
225+30r+ = 900 - 4
+ 6r -135 =0
Решение квадратного уравнения - два ответа: 9 и -15
r = 9
Зная радиус находим длину биссектрисы Fb = 15+9 =24
В треуг. abF по теореме Пифагора сторона af = 18
P = 30+30+18*2 = 96
ответ:96