Плоскости α и β перпендикулярны. Прямая ρ – линия их пересечения. В плоскости α выбрали точку М, а в плоскости β - точку N такие что расстояния от них до прямой ρ равны 6 см и 7 см соответственно. Найдите расстояние между основаниями перпендикуляров ,проведенных из точек М и N к прямой ρ,если расстояние между точками М и Ν равно 110 см.
Р(ΔВСМ)=ВС+ВМ+МС
По условию
АМ=МС
ВС на 2 мм больше АВ
Значит, Р(ΔАВМ) меньше Р(ΔВСМ) на 2 мм
ответ.Р(ΔВСМ)=16+ 2=18 мм
2) Р(ΔАВD)=АВ+ВD+АD
Р(ΔВDC)=ВС+ВD+DС
По условию периметры отличаются на 5 см.
Поскольку ВD общая и в том и в другом периметрах, то разница может быть за счет двух оставшихся сторон.
1)Либо АВ+AD больше BC +CD на 5 см
2) либо АВ+AD меньше BC +CD на 5 см
Так как АВ+AD =28 cм, то
1) BC +CD =28 + 5=33 см
2)BC +CD =28 - 5=23 см
ответ. 1) Р(ΔАВС)=АВ+AD+DC+BC=28+33=61 см
2)Р(ΔАВС)=АВ+AD+DC+BC=28+23=51 см
1.
а) р=48/2=24 см, вторая сторона 24-10=14 см, площадь - 10*14=140 см²;
б) р=36/2=18 см, вторая сторона - 18-10=8 см, площадь - 10*8=80 см².
2.
а) р=20/2=10 см, 10-2=8 см - сумма сторон при их равенстве между собой, 8/2=4 см - одна сторона, 4+2=6 см - другая сторона, 6*4=24 см² - площадь;
б) р=10 см, 10-4=6 см - сумма сторон при их равенстве, 6/2=3 см - одна сторона, 3+7=7 см - другая сторона, 3*7=21 см² - площадь.