Плоскости квадрата ABCD и равнобедренного тре угольника DCM (угол C=90°) взаимноперпендикулярны. Найдите площадь треугольника ADM, если площадь квадрата ABCD равна 144 см^2 .
Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они прямоугольные, углы HAK и KAN равны, поскольку АК — биссектриса, сторона AK — общая, следовательно, треугольники равны. Тогда KN=KH=4. Аналогично, равны треугольники BKH и BKM, откуда MK=KH=4.
Найдём площадь параллелограмма как произведение основания на высоту.
BC = 19; KH = 10; Рассмотрим треугольники AKB и BKM (на рисунке одинаковыми цветами отмечены равные углы). Поскольку у них равны два угла, то у них равны и третьи. Т.е ∠BKA = ∠BKM = 180°/2 = 90°. Значит биссектрисы пересекаются под прямым углом. Δ ABN - равнобедренный. Значит BK = KN, в силу того, что AK - медиана. Также Δ ABM равнобедренный. Значит AK = KM; Δ AKN = Δ BKM по двум сторонам и углу между ними. В равных треугольниках равны соответствующие элементы, значит высоты TK и KE равны. Треугольники HBK и TBK равны по углу и общей гипотенузе. Следовательно HK = KT = KE; Теперь найдем площадь S. S = BC*(TK+KE) = 2*BC*HK = 2*19*10 = 380
Вот........
ЭТА ЗАДАЧА ПО ГЕОМЕТРИИ КАК ДОКАЗАТЬ
ТУТ ПИШЕМ ПРЯМО ЧТО МЫ ДЕЛАЕМ А ПОТОМ И РЕШАЕМ.
Если не понятен почерк вот решение
Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они прямоугольные, углы HAK и KAN равны, поскольку АК — биссектриса, сторона AK — общая, следовательно, треугольники равны. Тогда KN=KH=4. Аналогично, равны треугольники BKH и BKM, откуда MK=KH=4.
Найдём площадь параллелограмма как произведение основания на высоту.
S=AD*MN=AD*(MK+KN)=7*(4+4)=7*8=56
ЧТД
ответ:56см