Определение: "Гомотетия - преобразование плоскости (или пространства), заданное центром O и коэффициентом k ≠ 0, переводящее каждую точку X в точку X ′ такую, что OX ′ = k·OX.
Построение.
Из точки О - центра гомотетии проводим лучи а, b и с через вершины А, В и С данного нам треугольника соответственно.
На этих лучах от центра О откладываем отрезки OA', OB' и OC', равные ОА·k = 1,5·ОА, ОВ·k = 1,5·ОВ и ОС·k = 1,5·ОС.
По теореме о трех перпендикулярах отрезок ОВ - проекция наклонной АВ, перпендикулярной прямой ВС (катеты). Следовательно, двугранный угол АВСО измеряется линейным углом АВО по определению и равен 45° (дано). Треугольник АВО прямоугольный и равнобедренный. Катеты АО=ОВ=2см, а гипотенуза АВ=2√2 см. В прямоугольном треугольнике АВС по Пифагору АС=√(АВ² +ВС²) = √(8+4) = 2√3см. В прямоугольном треугольнике АОС синус угла АСО (искомый угол, так как это угол между наклонной АС и плоскостью α по определению) равен отношению АО/АС = 2/(2√3) = √3/3. По таблице - это угол, равный 35,2°.
Построение в объяснении.
Объяснение:
Определение: "Гомотетия - преобразование плоскости (или пространства), заданное центром O и коэффициентом k ≠ 0, переводящее каждую точку X в точку X ′ такую, что OX ′ = k·OX.
Построение.
Из точки О - центра гомотетии проводим лучи а, b и с через вершины А, В и С данного нам треугольника соответственно.
На этих лучах от центра О откладываем отрезки OA', OB' и OC', равные ОА·k = 1,5·ОА, ОВ·k = 1,5·ОВ и ОС·k = 1,5·ОС.
Полученные точки A', B' и C' соединяем отрезками.
Получили треугольник A'B'C' гомотетичный данному.
По теореме о трех перпендикулярах отрезок ОВ - проекция наклонной АВ, перпендикулярной прямой ВС (катеты). Следовательно, двугранный угол АВСО измеряется линейным углом АВО по определению и равен 45° (дано). Треугольник АВО прямоугольный и равнобедренный. Катеты АО=ОВ=2см, а гипотенуза АВ=2√2 см. В прямоугольном треугольнике АВС по Пифагору АС=√(АВ² +ВС²) = √(8+4) = 2√3см. В прямоугольном треугольнике АОС синус угла АСО (искомый угол, так как это угол между наклонной АС и плоскостью α по определению) равен отношению АО/АС = 2/(2√3) = √3/3. По таблице - это угол, равный 35,2°.
ответ: 35,2°.