из подобия треугольников (получается три и все подобны). Проекция вершины при угле 90 градусов даст перпендикуляр к гипотенузе. Этот перпендикуляр разделит исходны треугольник на 2 прямоугольных. Вот эти три подобны (у них углы одинаковые).
Если два треугольника подобны, то стороны одного из них получаются из сторон другого умножением на некоторое положительное число (а, допустим). Тогда стороны первого из сторон второго получаются умножением на (1/а).
Можно нарисовать картинку и получить пару уравнений относительно длины отрезка гипотенузы, на который не попала проекция катета (пусть это х). И коэффициента подобия (пусть к) при переходе от исходного к тому внутреннему, у которого сторона (один из катетов) равна пяти.
Первый из них не подходит для первого из уравнений выразите х^2 и увидите при подстановке,что квадрат х отрицателен будет; или сразу заметьте, что при к = sqrt(5) / 2 > 1 будет 6 меньше чем 6к).
В решении этой задачи применима теорема Пифагора.
Смотрите рисунок, данный во вложении.
Если продолжить расстояние от точки А - проекции М на прямую α -
на длину расстояния от точки N до ее проекции В,
и соединить конец С этого отрезка с N,
получим прямоугольный треугольник MСN,
в котором известны гипотенуза MN=13 см,
и меньший катет МС=2+3=5 см
Если знаете несколько из Пифагоровых троек, а это как раз такая тройка (13,5,12), то, возможно, догадаетесь, что СN =12 см
По теореме Пифагора:
СN²=MN²- МС²= 169-25=144
СN=12 см
АВ=СN=12 см
ответ: Искомое расстояние равно 12 см
Если два треугольника подобны, то стороны одного из них получаются из сторон другого умножением на некоторое положительное число (а, допустим). Тогда стороны первого из сторон второго получаются умножением на (1/а).
Можно нарисовать картинку и получить пару уравнений относительно длины отрезка гипотенузы, на который не попала проекция катета (пусть это х). И коэффициента подобия (пусть к) при переходе от исходного к тому внутреннему, у которого сторона (один из катетов) равна пяти.
6^2 = (6к)^2 + х^2
5^2 + (6к)^2 = (5 / к)^2 (оно биквадратное).
Их второго к = sqrt(5) / 2 или sqrt(5) /3
Первый из них не подходит для первого из уравнений выразите х^2 и увидите при подстановке,что квадрат х отрицателен будет; или сразу заметьте, что при к = sqrt(5) / 2 > 1 будет 6 меньше чем 6к).
Из первого можно х найти. x = 4
Гипотенуза исходного = 5 + 4 = 9.
Второй катет ---5 / к = 3*sqrt(5).