Что бы вписать окружность в трапецию, необходимо что бы суммы противоположных сторон были равны. Следовательно сумма двух равных боковых сторон (20) должна равняться сумме двух оснований трапеции. Тогда второе основание соответственно равно 18 см. Площадь трапеции это полусумма оснований умноженная на высоту. Так как трапеция равнобедренная можем найти высоту: Опустим две высоты к большему основанию и получим три фигуры: два равных прямоугольных треугольника и прямоугольник. Катет прямоугольного треугольника будет равен: (18-2):2=8 см. А гипотенуза 10 см. По теореме Пифагора найдем второй катет: 10^2=8^2+х^2 100=64+х^2 х^2=36 х=6 Высота трапеции равна 6 см. Можем найти площадь: S=(2+18)/2 *6 S=20/2 *6 S=10*6 S=60 см^2. ответ: площадь трапеции равна 60 см^2.
У равнобедренного треугольника медиана к основанию будет и высотой и биссектрисой. Так как треугольник еще и равнобедренный, то углы при основании = 45 градусов, тогда: 1. Медиана = высота образует 2 равнобедренных прямоугольных треугольника. 2 стороны при основании равны и = 4 => основание исходного треугольника = 8 см. А стороны при основании = см 2. Аналогично первому случаю имеем основание 6 см, а стороны при основании 3. диагональ прямоугольника образует 2 прямоугольных треугольника и является их гипотенузой. Катеты - стороны. По теореме Пифагора получаем см. 4. Трапеция равнобокая. Высота отсечет от нее прямоугольный треугольник с гипотенузой - боковой стороной = 5см и вторым катетом = (14-8)/2=3 см. Тогда высота трапеции = см.
Тогда второе основание соответственно равно 18 см.
Площадь трапеции это полусумма оснований умноженная на высоту.
Так как трапеция равнобедренная можем найти высоту:
Опустим две высоты к большему основанию и получим три фигуры: два равных прямоугольных треугольника и прямоугольник.
Катет прямоугольного треугольника будет равен: (18-2):2=8 см. А гипотенуза 10 см.
По теореме Пифагора найдем второй катет:
10^2=8^2+х^2
100=64+х^2
х^2=36
х=6
Высота трапеции равна 6 см. Можем найти площадь:
S=(2+18)/2 *6
S=20/2 *6
S=10*6
S=60 см^2.
ответ: площадь трапеции равна 60 см^2.
1. Медиана = высота образует 2 равнобедренных прямоугольных треугольника. 2 стороны при основании равны и = 4 => основание исходного треугольника = 8 см. А стороны при основании = см
2. Аналогично первому случаю имеем основание 6 см, а стороны при основании
3. диагональ прямоугольника образует 2 прямоугольных треугольника и является их гипотенузой. Катеты - стороны. По теореме Пифагора получаем см.
4. Трапеция равнобокая. Высота отсечет от нее прямоугольный треугольник с гипотенузой - боковой стороной = 5см и вторым катетом = (14-8)/2=3 см. Тогда высота трапеции = см.