АВ=CD так как противоположные стороны параллелограмма равны. Тогда 0,5*АВ=0,5*CD.
Так как К – середина АВ, то АК=0,5*АВ.
Так как Е – середина CD, то ЕС=0,5*CD.
Получим что АК=ЕС.
АК//ЕС, так как AB//CD, поскольку противоположные стороны параллелограмма параллельны.
Тогда получим что AECK – параллелограмм, так как противоположные стороны паралельны и равны. Следовательно АЕ//КС так как противоположные стороны параллелограмма параллельны.
По обобщённой теореме Фалеса: параллельные прямые отсекают на сторонах угла пропорциональные отрезки.
То есть
Пусть СЕ=n, тогда ED=n так же, так как CE=ED. Тогда:
Пусть AK=m, тогда КВ=m так же, так как AK=KB.
Получим что PD:LP:BL=1:1:1, или иначе говоря отрезки равны.
АВ=CD так как противоположные стороны параллелограмма равны. Тогда 0,5*АВ=0,5*CD.
Так как К – середина АВ, то АК=0,5*АВ.
Так как Е – середина CD, то ЕС=0,5*CD.
Получим что АК=ЕС.
АК//ЕС, так как AB//CD, поскольку противоположные стороны параллелограмма параллельны.
Тогда получим что AECK – параллелограмм, так как противоположные стороны паралельны и равны. Следовательно АЕ//КС так как противоположные стороны параллелограмма параллельны.
По обобщённой теореме Фалеса: параллельные прямые отсекают на сторонах угла пропорциональные отрезки.
То есть
Пусть СЕ=n, тогда ED=n так же, так как CE=ED. Тогда:
Пусть AK=m, тогда КВ=m так же, так как AK=KB.
Получим что PD:LP:BL=1:1:1, или иначе говоря отрезки равны.
ответ: 1
Теорема - это высказывание, истинность которого необходимо доказать.
В теореме можно выделить 3 части:
1) преамбула. В ней описываются множества, относительно которых задана теорема. Это области определения высказывания А и высказывания В.
2) условия теоремы. Это предложение А или то что дано в теореме.
3) заключение теоремы. Это предложение В или то что нужно доказать в теореме.
Различают 4 вида теорем:
1. Данная теорема. Например: вертикальные углы равны. Если углы вертикальные, то они равны.
2. Теорема обратная данной. Например: если углы равны, то они вертикальные (данная теорема - ложна).
3. Теорема противоположная данной - Если углы не вертикальные, то они не равны (данная теорема ложна).
4. Теорема противоположная обратной - Если углы не равны, то они не вертикальные. (Истинная теорема)