По : 1. в правильный шестиугольной призме все рёбра равны 2. найдите: а)площадь сечения призмы, проходящего через боковое ребро и меньшую диагональ основания. б) косинус угла, образованного большей диагональю призмы с плоскостью основания. 2. в прямоугольном параллелепипеде abcda1b1c1d1 известно что bd1=6, cc1=2, ad=корню из 7. найти объём параллелепипеда
ответ: 8 сторон
Объяснение: Сумма внешних углов выпуклого многоугольника ( любого) равна 360°.
Сумма внутренних углов данного многоугольника по условию
360°+720°=1080°.
Если N- сумма внутренних углов, то их количество находят по формуле
N=180°•(n-2), где n - число сторон многоугольника.
1080°=180°•n -360° , откуда
n=1448°:180°=8
Иногда удобнее применять другой с тем же результатом).
Сколько бы ни было сторон у выпуклого многоугольника, каждый внутренний угол с одним внешним при той же вершине составляет в сумме 180° ( развернутый угол).
Сумма внутренних (1080°) и внешних ( 360°) углов данного многоугольника = 1080°+360°= 1440°
Делим на величину развёрнутого угла:
1440°:180°=8 ( сторон),
ответ: 8 сторон
Объяснение: Сумма внешних углов выпуклого многоугольника ( любого) равна 360°.
Сумма внутренних углов данного многоугольника по условию
360°+720°=1080°.
Если N- сумма внутренних углов, то их количество находят по формуле
N=180°•(n-2), где n - число сторон многоугольника.
1080°=180°•n -360° , откуда
n=1448°:180°=8
Иногда удобнее применять другой с тем же результатом).
Сколько бы ни было сторон у выпуклого многоугольника, каждый внутренний угол с одним внешним при той же вершине составляет в сумме 180° ( развернутый угол).
Сумма внутренних (1080°) и внешних ( 360°) углов данного многоугольника = 1080°+360°= 1440°
Делим на величину развёрнутого угла:
1440°:180°=8 ( сторон),