Так как длины радиусов - целые числа, то с, a₁ и b₁ должны быть квадратами целых чисел. Наименьший квадрат целого числа, который является суммой квадратов целых чисел, это 25 (25 = 9 + 16) Тогда,
r₁/r = 3/5 r₂/r = 4/5
Так как радиусы должны быть наименьшими, это 3, 4 и 5.
Мне понравился мой рисунок, так что я сделаю исключение для этой задачки. Пусть O - центр окружности, а Т - середина KN, и PT пересекает LM в точке E. Так как треугольник KPT равнобедренный, есть такая "цепочка" равных углов ∠PLM = ∠PKN = ∠KPT = ∠EPM; откуда ясно, что в треугольнике LMP PE - высота. То есть - другими словами - получилось, что если через точку P пересечения диагоналей провести прямую перпендикулярно LM, то она пройдет через середину KN - точку T; Точно так же через точку P можно провести прямую перпендикулярно KN, и она пройдет через середину LM - точку Q. Легко видеть, что OQPT - параллелограмм. Так как OQ тоже перпендикулярно LM, а OT перпендикулярно KN. То есть OQ II PT; OT II PQ; Следовательно OT = PQ = LN/2; (PQ - медиана прямоугольного треугольника LMQ)
r - радиус окружности, вписанной в большой треугольник,
r₁ - радиус окружности, вписанной в синий треугольник,
r₂ - радиус окружности, вписанной в коричневый треугольник.
Будут использованы формулы:
h² = a₁b₁
a² = a₁c
b² = b₁c
Большой треугольник:
r = (a + b - c)/2 = (√(a₁c) + √(b₁c) - √(c²))/2 = √c·( √a₁ + √b₁ - √c)/2
Синий треугольник:
r₁ = (a₁ + h - a)/2 = (√(a₁)² + √(a₁b₁) - √(a₁c))/2 = √a₁·(√a₁ + √b₁ - √c)/2
Коричневый треугольник:
r₂ = (h + b₁ - b) /2 = (√(a₁b₁) + √(b₁)² - √(b₁c))/2 = √b₁·(√a₁ + √b₁ - √c)/2
r₁/r = √a₁/√c
r₂/r = √b₁/√c
Так как длины радиусов - целые числа, то с, a₁ и b₁ должны быть квадратами целых чисел.
Наименьший квадрат целого числа, который является суммой квадратов целых чисел, это 25 (25 = 9 + 16)
Тогда,
r₁/r = 3/5
r₂/r = 4/5
Так как радиусы должны быть наименьшими, это 3, 4 и 5.
Пусть O - центр окружности, а Т - середина KN, и PT пересекает LM в точке E. Так как треугольник KPT равнобедренный, есть такая "цепочка" равных углов ∠PLM = ∠PKN = ∠KPT = ∠EPM; откуда ясно, что в треугольнике LMP PE - высота.
То есть - другими словами - получилось, что если через точку P пересечения диагоналей провести прямую перпендикулярно LM, то она пройдет через середину KN - точку T;
Точно так же через точку P можно провести прямую перпендикулярно KN, и она пройдет через середину LM - точку Q.
Легко видеть, что OQPT - параллелограмм. Так как OQ тоже перпендикулярно LM, а OT перпендикулярно KN.
То есть OQ II PT; OT II PQ;
Следовательно OT = PQ = LN/2; (PQ - медиана прямоугольного треугольника LMQ)