Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.
Пусть внешний угол треугольника А = внешнему углу треугольника С и = 120°, тогда найдём внутренние углы треугольника.
Рассмотрим треуг АBС, по свойству внешнего угла, внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
По теореме о суммах внешних углов, внешний угол А + внутренний угол А = 180°, угол А = 180-120=60°
так же и внешний угол С - угол С треуг ABC= 180-120=60°
А т.к. сумма углов треугольника = 180°, то
180-(60+60) = 180-120=60° - угол B
А если все углы треугольника равны, то треугольник равносторонний.
Объяснение:
Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.