Подобные треугольники – это треугольники, у которых все углы равны и все стороны строго пропорциональны. Коэффициент пропорциональности называется коэффициентом подобия.
1) Треугольники ABC и MPK подобны по СУС (2 стороны и угл между ними ) т.к 10\8 =5\4 =>стороны относительно равны.
2)Треугольники ABC и FNE подобны по СУС т.к треугольники равнобедренные.
5) Треугольники ABC и ABD подобны объяснить затрудняюсь.
7) Треугольники ABC и ABD подобны по СУС т.к 24\18 = 16\12
В треугольнике СDE угол СDE = 90 градусов, т.к. DE перп. DC по условию, тогда ЕС - гипотенуза. Проведём из точки D к гипотенузе медиану DM, медиана из вершины прямого угла равна половине гипотенузы, тогда DM = EC/2=1. Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
Подобные треугольники – это треугольники, у которых все углы равны и все стороны строго пропорциональны. Коэффициент пропорциональности называется коэффициентом подобия.
1) Треугольники ABC и MPK подобны по СУС (2 стороны и угл между ними ) т.к 10\8 =5\4 =>стороны относительно равны.
2)Треугольники ABC и FNE подобны по СУС т.к треугольники равнобедренные.
5) Треугольники ABC и ABD подобны объяснить затрудняюсь.
7) Треугольники ABC и ABD подобны по СУС т.к 24\18 = 16\12
а углы ABD = BCA.
Объяснение:
Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
Интересная задачка напряг извилины.