По данным рисунка Докажите что а N равно n Реши задачу в тетради с подробной записью каждого шага в решении мын отрезки касательных проведенных из точки А к окружности с центром О найдите и он если A равно 12 см угол Mon равно 120 градусов
1. возьмем за х-угол D, тогда х+40-угол F, х\3- угол E, сумма углов в треугольнике 180 градусов. составляем уровнение х+х+40+х/3=180 избавляемся от дроби в уравнении,для этого домножаем все на 3 3х+3х+120+х=540 7х=420 х=60-это угол D 60+40=100-это угол F 60:3=20-это угол E 2. Решение: 180-120=60 - угол Z По теореме: напротив угла 30 градусов лежит сторона = половине гипотенузы. угол XYZ= 90-60=30, значит YX= 1/2YZ, YZ= 7×2=14 ответ: YZ=14см 3. Так как треугольник равнобедренный то угол K равен углу M PA=PB по теореме о гипотенузе и остром углу Делать нечего!)
х+40-угол F,
х\3- угол E,
сумма углов в треугольнике 180 градусов.
составляем уровнение
х+х+40+х/3=180
избавляемся от дроби в уравнении,для этого домножаем все на 3
3х+3х+120+х=540
7х=420
х=60-это угол D
60+40=100-это угол F
60:3=20-это угол E
2. Решение: 180-120=60 - угол Z По теореме: напротив угла 30 градусов лежит сторона = половине гипотенузы. угол XYZ= 90-60=30, значит YX= 1/2YZ, YZ= 7×2=14 ответ: YZ=14см
3. Так как треугольник равнобедренный то угол K равен углу M
PA=PB по теореме о гипотенузе и остром углу
Делать нечего!)
OC ⊥ BM ( OC ⊥ BC ,где O центр малой окружности , BC касательная) ⇒ AM | | OC . MC/CB= AO/OB (обобщенная теорема Фалеса) .
2,4 /4 =r/(2R -r) ⇔ r=3R/4 (1) .
Из ΔBCO по теореме Пифагора :
OB² - OC² =BC² ;
(2R -r)² - r² = 4² ⇔ 4R(R-r) =16 ⇔ R(R-r) =4 (2).
R(R -3R/4) =4 ⇒ R =4. ⇒ r=3R/4 = 3.
AD =AC+CD.
AM =√(AB² -BM²) =√((2R)² -(MC+CB)² ) =√(8² -6,4²) =√(8 -6,4)(8 +6,4) =4,8.
AM можно вычислить по другому: AM/OC =MB/CB ⇔ AM/3 =6,4/4⇒
AM =4,8.
---
AC =√(BC² +AM²) =√(2,4² +4,8²) =√(2,4² +(2*2,4)²) = 2,4√5.
AC*CD = MC*BC ⇔ 2,4√5 *CD =2,4*4⇒ CD =4/√5 =4√5 / 5 =0,8√5.
AD =AC+CD= 2,4√5 + 0,8√5 =3,2√5 .