Известная теорема (или утверждение): медиана в прямоугольном треугольнике, проведенная из вершины прямого угла (то есть к гипотенузе) равна половине гипотенузы. Докажите сами, мне лень здесь всё расписывать (ну или посмотрите доказательство в интернете) Тогда длина гипотенузы в два раза больше длины этой медианы, то есть c = 2*13 = 26. Кроме того, по условию один из катетов a=24. По теореме Пифагора: c^2 = a^2 + b^2; b^2 = c^2 - a^2 = (26^2) - (24^2) = (26-24)*(26+24) = 2*50 = 100, b^2 = 100; b = √100 = 10.
Пусть расстояние от точки М до прямой АС - перпендикуляр МК=10, а расстояние от точки М до прямой АВ - перпендикуляр МН. По свойству угла между касательной и хордой <BAM равен половине дуги, заключенной между касательной АВ и хордой АМ. <BAC равен половине дуги, заключенной между касательной АВ и хордой АС. Дуги АМ и МС равны (дано) Значит АМ - биссектриса <BAC и прямоугольные треугольники НАМ и КАМ равны по острому углу и общей гипотенузе АМ. Из этого равенства катеты МН и МК равны. ответ: искомое расстояние МН=10.
Тогда длина гипотенузы в два раза больше длины этой медианы, то есть
c = 2*13 = 26. Кроме того, по условию один из катетов a=24.
По теореме Пифагора: c^2 = a^2 + b^2;
b^2 = c^2 - a^2 = (26^2) - (24^2) = (26-24)*(26+24) = 2*50 = 100,
b^2 = 100;
b = √100 = 10.
По свойству угла между касательной и хордой
<BAM равен половине дуги, заключенной между касательной АВ и хордой АМ.
<BAC равен половине дуги, заключенной между касательной АВ и хордой АС. Дуги АМ и МС равны (дано)
Значит АМ - биссектриса <BAC и прямоугольные треугольники НАМ и КАМ равны по острому углу и общей гипотенузе АМ. Из этого равенства катеты МН и МК равны.
ответ: искомое расстояние МН=10.