площадь трапеции = произведению средней линии на высоту)
площадь выпуклого четырехугольника (и трапеции тоже) = половине произведения диагоналей на синус угла между ними)
диагонали равнобедренной трапеции равны)
S = 10V3*h = d*d*sin(60°)/2
h = d*d*(V3/4):(10V3)
h = d*d/40 ---> d^2 = 40h
тупой угол между диагоналями 120°; если для одной из диагоналей (любой из двух) провести параллельную прямую из второй (другой) вершины меньшего основания (диагональ BD, например, параллельно перенести в вершину С), получим равнобедренный треугольник (диагонали равны) с углом при вершине 120°;
искомая высота трапеции будет высотой этого равнобедренного треугольника, с диагональю высота образует угол 60° (она же и биссектриса и медиана)
катет против угла в 30° (это и есть высота) равен половине гипотенузы (это диагональ)
Если все боковые ребра пирамиды равны, то вершина пирамиды проецируется в центр окружности описанной около основания. В основании прямоугольный треуг-к, значит центр окружности является серединой гипотенузы. Рассмотрим основание пирамиды треуг-к АВС. По т. Пифагора
ответ: 10.
Объяснение:
площадь трапеции = произведению средней линии на высоту)
площадь выпуклого четырехугольника (и трапеции тоже) = половине произведения диагоналей на синус угла между ними)
диагонали равнобедренной трапеции равны)
S = 10V3*h = d*d*sin(60°)/2
h = d*d*(V3/4):(10V3)
h = d*d/40 ---> d^2 = 40h
тупой угол между диагоналями 120°; если для одной из диагоналей (любой из двух) провести параллельную прямую из второй (другой) вершины меньшего основания (диагональ BD, например, параллельно перенести в вершину С), получим равнобедренный треугольник (диагонали равны) с углом при вершине 120°;
искомая высота трапеции будет высотой этого равнобедренного треугольника, с диагональю высота образует угол 60° (она же и биссектриса и медиана)
катет против угла в 30° (это и есть высота) равен половине гипотенузы (это диагональ)
h = d/2 ---> d = 2h
(2h)^2 = 40h
4h = 40
h = 10
Если все боковые ребра пирамиды равны, то вершина пирамиды проецируется в центр окружности описанной около основания. В основании прямоугольный треуг-к, значит центр окружности является серединой гипотенузы. Рассмотрим основание пирамиды треуг-к АВС. По т. Пифагора
АВ^2=BC^2+AC^2
АВ^2=6^2+8^2 = 36+64=100
AB=10
AO=10:2=5 (cм) - радиус описанной окружности.
SO - высота пирамиды. S - вершина пирамиды.
Рассмотрим треуг-к АОВ. Угол О=90
По т. Пифагора
SВ^2=ОB^2+SО^2
SО^2=SВ^2-ОB^2
SО^2=13^2-5^2 = 169-25=144
SО=12(см)
ответ:12(см)