по Геометрии Постройте прямоугольный треугольник DPS
с прямым углом Д.
Проведите в нём биссектрису РА. Рядом с рисунком вычислите угол Р, если угол APS равен 34 градуса.
2)Постройте тупоугольный треугольник MNK с тупым углом М. Проведите в нём медиану КЕ. Рядом с рисунком вычислите длину отрезка ЕМ, если MN=6 см.
3) Повторите определение высоты треугольника.
Постройте остроугольный треугольник ABC. Проведите высоту СК.
ΔАСВ - прямоугольный : АВ - гипотенуза ; АС,СВ - катеты
∠С= 90°
∠В = 60°
Сумма острых углов прямоугольного треугольника равна 90°.
Следовательно: ∠А = 90 - 60 = 30°
Катет лежащий против угла в 30° равен половине гипотенузы.
СВ = АВ/2
По теореме Пифагора:
АВ² = АС² + СВ² ⇒ АВ² = АС² + (АВ/2)²
АС= √ (АВ² - (АВ²/4)) ⇒ АС = √ ((4АВ² - АВ²)/4) = √(3АВ²/4) = (АВ*√3) /2
S =1/2 * АС * СВ = 18√3 / 3
1/2 * ((АВ*√3)/2 * (АВ/2)) = 18√3 / 3
1/2 * ( (АВ²*√3) / 4 ) = 18√3 / 3
АВ²√3 / 8 = 18√3 / 3
3 *√3* АВ² = 18√3 * 8
АВ² = 144√3 / 3√3
АВ² = 48
АВ = √48 = √(16*3) = 4√3 - гипотенуза
СВ = 4√3 /2 = 2√3 - один катет
АС = (4√3 *√ 3)/2 = (4*(√3)²)/2 = 12/2 = 6 - второй катет, который лежит против угла В = 60°.
ответ: АС = 6.
Будем считать, что задание дано так:
Определить уравнение окружности, проходящей через правую вершину гиперболы 40x² - 81y² = 3240 и имеющей центр в точке А(-2; 5).
Уравнение гиперболы приведём к каноническому виду, разделив обе части заданного уравнения на 3240:
(x²/81) - (y²/40) = 1.
Или так: (x²/9²) - (y²/(2√10)²) = 1 это и есть каноническое уравнение.
Отсюда находим координаты правой вершины гиперболы: С(9; 0).
Теперь находим радиус заданной окружности как отрезок АС.
АС = √((9 - (-2))² + (0 - 5)²) = √(121 + 25) = √146.
Получаем ответ: (x + 2)² + (y - 5)² = 146.