Площадь основания шарового сегмента S=πr². 64π=πr². Отсюда r=8 ( Радиус основания сегмента) Площадь сферической поверхности шарового сегмента S=2πRh, где R- радиус шара. 100π=2πRh, отсюда 2Rh=100. По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r². Отсюда h=√(100-64)=6. R=100/(2*6)=8и1/3. Вот теперь знаем и R, и h. Формула объема шарового сегмента V=πh²(R-(1/3)*h)). Подставляем известные значения и имеем: V =π*36*(8и1/3-2)=228π. ответ: V = 228π.
№7) Решение: В равнобедренном треугольнике углы при основании равны. ∠С=∠А=70° Сумма углов в треугольнике равна 180° ∠В=180°-∠С-∠А=180°-70°-70°= =40° ответ: ∠А=70°; ∠С=70°; ∠В=40°
№2) Внешний угол ∠А равен сумме двух внутренних углов треугольника не смежных с ним. ∠В+∠С=110° ∠С=110°-∠В=110°-40°=70° Внешний угол ∠А и внутренний угол ∠А, являются смежными углами. Сумма смежных углов равна 180° ∠ВАС=180°-110°=70° ответ: ∠А=70°; ∠В=40°; ∠С=70°
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
ответ: V = 228π.
https://ru-static.z-dn.net/files/db3/f2bb8e148665d36051a6a0a5e42354f8.jpg
Решение:
В равнобедренном треугольнике углы при основании равны.
∠С=∠А=70°
Сумма углов в треугольнике равна 180°
∠В=180°-∠С-∠А=180°-70°-70°=
=40°
ответ: ∠А=70°; ∠С=70°; ∠В=40°
№2)
Внешний угол ∠А равен сумме двух внутренних углов треугольника не смежных с ним.
∠В+∠С=110°
∠С=110°-∠В=110°-40°=70°
Внешний угол ∠А и внутренний угол ∠А, являются смежными углами.
Сумма смежных углов равна 180°
∠ВАС=180°-110°=70°
ответ: ∠А=70°; ∠В=40°; ∠С=70°
№11)
∠А=∠DCM=50°, соответственные углы при параллельных прямых
АВ||СD, секущей АС.
∠ВСА=180°-60°-50°=70° смежные углы.
∠В=180°-∠А-∠ВСА=180°-50°-70°=60°
ответ: ∠В=60°; ∠А=50°; ∠ВСА=70°