Треугольник АВС, МН-средняя линия=1/2АВ, проводим высоту СК на АВ, О-пересечение СК и МН, АВ=4х, СК=2у, площадь АВС=1/2*АВ*СК=1/2*4х*2у=4ху, треугольник АВС подобен треугольнику СМН по двум равным углам (АВ параллельна МН), угол В=уголСМН, уголА=уголСНМ как соответственные, МН=1/2АВ=4х/2=2х, в подобных треугольниках площади относятся как квадраты соответствующих сторон, АВ²/МН²=площадьАВС/площадьМСН, 16х²/4²=площадьАВС/площадьМСН,, т.е площадь АВС составляет 4 части, а площадь МСН=1 части, на долю АВМН=4-1=3 части=24, 1 часть=24/3=8=площадьМСН
Пусть ABCD - параллелограмм. BM=5см и BN=10см - высоты, проведённые из вершины В. Для простоты пусть <BAM=x, <ABM=y, <CBN=z.
В прямоугольном тр-ке △АВМ х+у=90°.
<ABC=y+50°+z.
По свойству углов параллелограмма <BAD+<ABC=180°. Подставляем наши значения:
х+y+50+z=180
Подставляем сюда выражение для х+у:
90+50+z=180
z=40°
cosCBN=BN/BC; BC=BN/cos40°=10/0,766=13,06 см
y=z, поскольку <BAM=<BCN
cosABM=BM/AB; AB=BM/cos40°=5/0.766=6.53 см
Либо можно воспользоваться свойством, что угол между высотами параллелограмма, проведенными из вершины тупого угла, равен острому углу параллелограмма, и получить те же значения.
Объяснение:
Пусть ABCD - параллелограмм. BM=5см и BN=10см - высоты, проведённые из вершины В. Для простоты пусть <BAM=x, <ABM=y, <CBN=z.
В прямоугольном тр-ке △АВМ х+у=90°.
<ABC=y+50°+z.
По свойству углов параллелограмма <BAD+<ABC=180°. Подставляем наши значения:
х+y+50+z=180
Подставляем сюда выражение для х+у:
90+50+z=180
z=40°
cosCBN=BN/BC; BC=BN/cos40°=10/0,766=13,06 см
y=z, поскольку <BAM=<BCN
cosABM=BM/AB; AB=BM/cos40°=5/0.766=6.53 см
Либо можно воспользоваться свойством, что угол между высотами параллелограмма, проведенными из вершины тупого угла, равен острому углу параллелограмма, и получить те же значения.