Из каждой вершины пятиугольника выходит две диагонали (сама с собой и соседними вершинами диагональ не образует), поэтому
5·2 = 10 - число отрезков, проведённых от всех вершин к противоположным.
При таком подсчёта каждая диагональ посчитана дважды (действительно, отрезки АС и СА - одна и та же диагональ), поэтому, чтобы найти число диагоналей выпуклого пятиугольника мы найденное количество отрезков разделим пополам:
Имеем дав прямоугольных треугольника с общим катетом - перпендикуляром к прямой и гипотенузами - наклонными к этой прямой. Второй катет у первого треугольника равен 2*х, у второго = 5*х (так как их отношение 2:5). Тогда по Пифагору квадрат общего катета этих треугольников равен: h² = 10²-4x² (1) и h² = 17² -25x² (2). Приравниваем (1) и (2): 100-4х² = 289 - 25х², откуда 21х² = 189, х² = 9, х = 3. Тогда длина перпендикуляра находится из (1): h = √(100-36) = √64 = 8. ответ: длина перпендикуляра равна 8см.
б) 5.
Объяснение:
Из каждой вершины пятиугольника выходит две диагонали (сама с собой и соседними вершинами диагональ не образует), поэтому
5·2 = 10 - число отрезков, проведённых от всех вершин к противоположным.
При таком подсчёта каждая диагональ посчитана дважды (действительно, отрезки АС и СА - одна и та же диагональ), поэтому, чтобы найти число диагоналей выпуклого пятиугольника мы найденное количество отрезков разделим пополам:
10 : 2 = 5.
ответ: 5 диагоналей.
Заметим, что иногда пользуются готовой формулой:
в выпуклом n-угольнике n(n-3) / 2 диагонали.Тогда по Пифагору квадрат общего катета этих треугольников равен:
h² = 10²-4x² (1) и h² = 17² -25x² (2). Приравниваем (1) и (2):
100-4х² = 289 - 25х², откуда 21х² = 189, х² = 9, х = 3.
Тогда длина перпендикуляра находится из (1): h = √(100-36) = √64 = 8.
ответ: длина перпендикуляра равна 8см.