1. Рассмотрим ромб ABCD, лежащий в основании. По свойствам ромба, его диагонали пересекаются под прямым углом и точкой пересечения делятся попопам. Обозначим точку пересечения как O.
2. Рассмотрим треугольник AOD. Он прямоугольный, его катеты AO и OD.
AO = AC/2 = 6/2 = 3 см
OD = BD/2 = 8/2 = 4 см
Найдем гипотенузу AD:
AD =
AD = 5 см
3. Стороны ромба равны, значит, треугольник AOD = AOB = BOC = COD, AB = BC = CD = AD = 5 см.
4. Теперь мы знаем все грани и можем найти площади.
Площадь оснований (площади ромбов) ABCD и A1B1C1D1 рассчитываются по формуле:
S = (AD * BC)/2 = 24 кв.см
Площади граней (всех в силу равенства сторон) - как площади прягоугольников.
Дано:
параллелепипед ABCDA1B1C1D1
AC = A1C1 = 6 см
BD = B1D1 = 8 см
AA1 = DD1 = CC1 = DD1 = 7 см
1. Рассмотрим ромб ABCD, лежащий в основании. По свойствам ромба, его диагонали пересекаются под прямым углом и точкой пересечения делятся попопам. Обозначим точку пересечения как O.
2. Рассмотрим треугольник AOD. Он прямоугольный, его катеты AO и OD.
AO = AC/2 = 6/2 = 3 см
OD = BD/2 = 8/2 = 4 см
Найдем гипотенузу AD:
AD =
AD = 5 см
3. Стороны ромба равны, значит, треугольник AOD = AOB = BOC = COD, AB = BC = CD = AD = 5 см.
4. Теперь мы знаем все грани и можем найти площади.
Площадь оснований (площади ромбов) ABCD и A1B1C1D1 рассчитываются по формуле:
S = (AD * BC)/2 = 24 кв.см
Площади граней (всех в силу равенства сторон) - как площади прягоугольников.
S = AA1 * AB = 7 * 5 = 35 кв.см
5. Площадь полной поверхности:
S = 2 * 24 + 4 * 35 = 48 + 140 = 188 кв.см
ответ: S = 188 кв.см
Вот и все :) Удачи!
Прямоугольный треугольник с катетам 4 см вписан в окружность. найдите площадь правильного шестиугольника, описанного около данной окружности.
Объяснение:
Дано : ΔАВС вписан в окружность, ∠С=90° , СА=СВ=4 см, правильный шестиугольник описан около данной окружности.
Найти :S(правильного шестиугольника).
Решение .
ΔАВС-прямоугольный, ∠С=90° , значит опирается на дугу в 180°⇒АВ диаметр. Найдем гипотенузу АВ по т. Пифагора
АВ=√( 4²+4²)=2√2 (см). Поэтому R=1/2*АВ=√2 (см).
Шестиугольник описан около данной окружности , значит для него √2 является радиусом вписанной окружности r=√2 cм.
По формуле r₆= ( a₆√3) /2 ⇒ √2=( a₆√3) /2 или a₆=(2√2) /√3 (см)
S=1/2*Р*r
S=1/2*(6*(2√2) /√3 )*√2=12/√3=4√3 (cм²)