В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой . Дано: DABC - равнобедренный; AB - основание. CD - медиана .
Док-ть: CD - высота и биссектриса .
Доказательство:
CA=CD - по условию РA= РB - по свойству равнобедренного треугольника AD=DB т. к. CD - медиана , ЮDCAD=DCBD (по 1-ому признаку равенства треугольников) ЮРACD= РBCD, РADC= РBDC РACD=РBCD Ю CD - биссектриса РACD и РBCD - смежные и равны Ю РACD и РBCD - прямые Ю CD - высота треугольника. ещё доказательство: http://oldskola1.narod.ru/Nikitin/0018.htm
Проведём перпендикуляр в точке О. Я его назвал H1H2. Точка О лежит на средней линии трапеции (так как концы этого отрезка на серединах сторон). Средняя линия параллельна основаниям (такое свойство у средней линии трапеции). Значит H1H2 перпендикулярно и средней линии и основаниям.
Докажем, что H1O=H2O, это можно сделать по теореме Фалеса, утверждающей, что параллельные прямые отсекают на секущих равные отрезки, (отрезки на боковой стороне равны, значит и на перпендикуляре равны).
И теперь рассматриваем треугольники AOH2 и COH2, о чудо они равны по 2 углам и стороне между ними (OH2=OH1, только что доказали, угол AH2O=OH1C=90 (там перпендикуляры), угол AOH2=COH1 как вертикальные)
А если треугольники равны, то и стороны против равных углов в них равны (есть такая теорема) значит и AO=OC равны ч.т.д.
Дано:
DABC - равнобедренный;
AB - основание. CD - медиана .
Док-ть:
CD - высота и биссектриса .
Доказательство:
CA=CD - по условию
РA= РB - по свойству равнобедренного треугольника
AD=DB т. к. CD - медиана ,
ЮDCAD=DCBD (по 1-ому признаку равенства треугольников)
ЮРACD= РBCD, РADC= РBDC
РACD=РBCD Ю CD - биссектриса
РACD и РBCD - смежные и равны
Ю РACD и РBCD - прямые Ю CD - высота треугольника. ещё доказательство: http://oldskola1.narod.ru/Nikitin/0018.htm
Объяснение:
Проведём перпендикуляр в точке О. Я его назвал H1H2. Точка О лежит на средней линии трапеции (так как концы этого отрезка на серединах сторон). Средняя линия параллельна основаниям (такое свойство у средней линии трапеции). Значит H1H2 перпендикулярно и средней линии и основаниям.
Докажем, что H1O=H2O, это можно сделать по теореме Фалеса, утверждающей, что параллельные прямые отсекают на секущих равные отрезки, (отрезки на боковой стороне равны, значит и на перпендикуляре равны).
И теперь рассматриваем треугольники AOH2 и COH2, о чудо они равны по 2 углам и стороне между ними (OH2=OH1, только что доказали, угол AH2O=OH1C=90 (там перпендикуляры), угол AOH2=COH1 как вертикальные)
А если треугольники равны, то и стороны против равных углов в них равны (есть такая теорема) значит и AO=OC равны ч.т.д.