В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Могу ошибиться в вычислениях.
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.