Уравнение окружности радиуса R с центром в точке C (a; b) имеет вид:
(x – a)² + (y – b)² = R².
1. Радиус — расстояние от центра окружности до любойточки на окружности. Таким образом, радиус будет равен расстоянию от точки c (2; 1) до точки d (5; 5).
Расстояние между точками A (x₁; y₁) и B (x₂; y₂) вычисляется по формуле:
AB = √((x₁ - x₂)² + (y₁ - y₂)²).
Таким образом, расстояние между точками c (2; 1) и d (5; 5) будет равно:
Уравнение окружности радиуса R с центром в точке C (a; b) имеет вид:
(x – a)² + (y – b)² = R².
1. Радиус — расстояние от центра окружности до любойточки на окружности. Таким образом, радиус будет равен расстоянию от точки c (2; 1) до точки d (5; 5).
Расстояние между точками A (x₁; y₁) и B (x₂; y₂) вычисляется по формуле:
AB = √((x₁ - x₂)² + (y₁ - y₂)²).
Таким образом, расстояние между точками c (2; 1) и d (5; 5) будет равно:
cd = R = √((2 - 5)² + (1 - 5)²) = √((- 3)² + (- 4)²) = √(9 + 16) = √25 = 5.
1. Подставим известные значения в уравнение окружности радиуса R = 5 с центром в точке c (2; 1):
(x – 2)² + (y – 1)² = 5²;
(x – 2)² + (y – 1)² = 25.
ответ: (x – 2)² + (y – 1)² = 25.
РЕШЕНИЕ:
• Рассмотрим тр. АВС:
По формуле Герона найдём площадь треугольника АВС:
где р = ( а + b + c ) / 2 - полупериметр, а, b и с - стороны треугольника
• Площадь треугольника АВС равна:
S abc = ( 1/2 ) • AC • h1
4V6 = ( 1/2 ) • 4 • h1
h1 = 2V6
• S abc = ( 1/2 ) • AB • h2
4V6 = ( 1/2 ) • 5 • h2
h2 = 8V6 / 5
• S abc = ( 1/2 ) • BC • h3
4V6 = ( 1/2 ) • 7 • h3
h3 = 8V6 / 7
Наибольшая высота треугольника АВС равна 2V6
Значит, ED = 2V6
• Обьём пирамиды ЕАВС равен:
V = ( 1/3 ) • S abc • ED = ( 1/3 ) • 4V6 • 2V6 = 2 • 8 = 16
ОТВЕТ: 16