Четырёхугольник ABCD - параллелограмм.
ВЕ = DF (Е ⊂ ВС, F ⊂ AD).
Четырёхугольник AECF - параллелограмм.
Отсюда следует, что ∠В = ∠D, АВ = CD.
Рассмотрим ΔАВЕ и ΔCDF.
ВЕ = DF (по условию)
∠В = ∠D, АВ = CD (по выше сказанному) ⇒ ΔАВЕ = ΔCDF по двум сторонам и углу между ними (первый признак равенства треугольников).
Из равенства треугольников следует и равенство сторон АЕ и CF.
AD = BC (по свойству параллелограмма), но в своё очередь AD = BE + EC ; BC = DF + AF. Учитывая равенство из условия получаем, что ЕС = AF.
АЕ = CF ; ЕС = AF (по выше сказанному) ⇒ четырёхугольник AECF - параллелограмм.
Что требовалось доказать.
Объяснение:
меньшее основание трапеции равно 5 см
большее основание равно 45 см
площадь трапеции равна Высоты трапеции BF и CE равны диаметру вписанной окружности.
Прямоугольные треугольники ABF и DCE равны.
По теореме Пифагора из треугольника ECD находим ED:
ED2=CD2−CE2;ED2=252−152;ED=252−152−−−−−−−−√;ED=20 см.
Так как в трапецию вписана окружность, то суммы противоположных сторон трапеции равны.
BC+AD=AB+CD;BC=FE, пустьBC=x, тогдаx+20+x+20=25+25;x=5.
BC= 5 см, AD= 20+5+20 = 45 см.
Площадь трапеции S= BC+AD2⋅EC=5+452⋅15 = 375 см2.
Основания трапеции равны 5 см и 45 см, площадь трапеции равна 375 см2. 375 см2.
Четырёхугольник ABCD - параллелограмм.
ВЕ = DF (Е ⊂ ВС, F ⊂ AD).
Доказать :Четырёхугольник AECF - параллелограмм.
Доказательство :В параллелограмме противоположные углы и противоположные стороны равны между собой (свойство параллелограмма).Отсюда следует, что ∠В = ∠D, АВ = CD.
Рассмотрим ΔАВЕ и ΔCDF.
ВЕ = DF (по условию)
∠В = ∠D, АВ = CD (по выше сказанному) ⇒ ΔАВЕ = ΔCDF по двум сторонам и углу между ними (первый признак равенства треугольников).
Из равенства треугольников следует и равенство сторон АЕ и CF.
AD = BC (по свойству параллелограмма), но в своё очередь AD = BE + EC ; BC = DF + AF. Учитывая равенство из условия получаем, что ЕС = AF.
Если в четырёхугольнике противоположные стороны попарно равны, то этот четырёхугольник - параллелограмм (свойство параллелограмма).АЕ = CF ; ЕС = AF (по выше сказанному) ⇒ четырёхугольник AECF - параллелограмм.
ответ :Что требовалось доказать.
Объяснение:
меньшее основание трапеции равно 5 см
большее основание равно 45 см
площадь трапеции равна Высоты трапеции BF и CE равны диаметру вписанной окружности.
Прямоугольные треугольники ABF и DCE равны.
По теореме Пифагора из треугольника ECD находим ED:
ED2=CD2−CE2;ED2=252−152;ED=252−152−−−−−−−−√;ED=20 см.
Так как в трапецию вписана окружность, то суммы противоположных сторон трапеции равны.
BC+AD=AB+CD;BC=FE, пустьBC=x, тогдаx+20+x+20=25+25;x=5.
BC= 5 см, AD= 20+5+20 = 45 см.
Площадь трапеции S= BC+AD2⋅EC=5+452⋅15 = 375 см2.
Основания трапеции равны 5 см и 45 см, площадь трапеции равна 375 см2. 375 см2.