побудувати коло вписане | описане навколо тупокутного, прямокутного, рівносторонього та рiвнобедреного трикутників. Всього у вас повинно бути в малюнків. ( )
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
ММ₁ параллельна прямым АА₁ и ВВ₁, значит тоже лежит в этой плоскости.
Плоскость АА₁В пересекает плоскость α по прямой b, значит точки А₁, В₁ и М₁ лежат на этой прямой.
Тогда плоский четырехугольник АА₁В₁В - трапеция, а ММ₁ - ее средняя линия.
ММ₁ = (АА₁ + ВВ₁) /2
1) AA₁ = 5 м, BB₁ = 7 м;
ММ₁ = (5 + 7)/2 = 6 м.
2) AA₁ = 3,6 дм, BB₁ = 4,8 дм;
ММ₁ = (3,6 + 4,8)/2 = 8,4/2 = 4,2 дм.
3) AA₁ = 8,3 см, BB₁ = 4,1 см;
ММ₁ = (8,3 + 4,1)/2 = 12,4/2 = 6,2 см.
4) AA₁ = a, BB₁= b
ММ₁ = (a + b)/2