Площадь боковой поверхности состоит из 6-ти одинаковых равнобедренных треугольников со сторонами 13 и основанием 10 (так как шестиугольная пирамида правильная). Найдем площадь одной грани такой пирамиды. Будем ее искать по формуле
,
где a=10 – основание треугольника; h – высота треугольника. Так как треугольник равнобедренный, то его высота, проведенная к основанию a будет делить это основание пополам. Следовательно, высоту можно найти из прямоугольного треугольника с катетом 5 и гипотенузой 13 по теореме Пифагора:
и площадь одной грани
.
В шестиугольной пирамиде 6 таких граней, получаем площадь боковой поверхности:
Допустим, это треугольник АВС, высота - АН, биссектриса-АЕ, угол 10 градусов-это угол НАЕ.Так как НАЕ равен 10 градусам, а из условия следует, что АНЕ равен 90 градусов = мы можем для начала найти угол АЕН. Так как сумма углов треугольника должна быть равна 180 град., находим : 180 - (90+10)=80 - это угол АЕН.Так как сторона ВС-это как бы развернутый угол - значит он равен 180 градусов, поэтому мы можем найти угол АЕС : 180-80=100 - это угол АЕС.Так как биссектриса делит угол пополам - значит углы ВАН и ЕАС должны быть равны по 45 градусов(потому что их сумма=90 градусов), но не забываем о 10 градусах , поэтому выходит, что угол ВАН = 30, а ЕАС=45 градусов.Ну а теперь можем найти угол АВС. АВС=180-(90+35)=55 градТеперь еще один острый угол АСВ. АСВ=180-(55+90)=35 градусовответ: АЕС =100: ВАН=30: АСВ=35: ЕАС=45.
Площадь боковой поверхности состоит из 6-ти одинаковых равнобедренных треугольников со сторонами 13 и основанием 10 (так как шестиугольная пирамида правильная). Найдем площадь одной грани такой пирамиды. Будем ее искать по формуле
,
где a=10 – основание треугольника; h – высота треугольника. Так как треугольник равнобедренный, то его высота, проведенная к основанию a будет делить это основание пополам. Следовательно, высоту можно найти из прямоугольного треугольника с катетом 5 и гипотенузой 13 по теореме Пифагора:
и площадь одной грани
.
В шестиугольной пирамиде 6 таких граней, получаем площадь боковой поверхности:
.
ответ: 360.
Онлайн курсы ЕГЭ и ОГЭ