Побудувати точки, які є образами точок А(4;0), В(0; -3), С(4; 1), D(-1; -4) при повороті на 90 градусів за годинниковою стрілкою навколо початку координат. Вказати координати отриманих точок.
Объяснение: Центром окружности, вписанной в треугольник, является точка пересечения его биссектрис.
Сумма углов треугольника 180° ⇒ ∠САВ+∠ВСА=180°-60°=120°. Биссектрисы АО и СО делят эти углы пополам, следовательно, 0,5∠ОАС+0,5∠ОСА=120°:2=60°.
Из суммы углов треугольника угол АОС=180°-60°=120°
Стороны треугольника - касательные для вписанной окружности. Отрезки касательных от точки вне окружности до точек касания равны (свойство). ⇒ АМ=AK=4, BN=BM=2, CN=CK=3. ⇒ Р=2•(2+3+4)=18 (ед. длины)
Примечание. Обозначения в решении даны согласно условию и рисунку к нему. Но, хотя ответ тот же, по данным в условии величинам не получится построить соразмерный рисунок. Должен быть при ∠В=60° отрезок СК=2, а ВМ=3. . (См. рисунок приложения).
15. треугольник АВС, МН-средняя линия , площадь АМН=21, треугольник АНС , НМ-медиана (АМ=МС), медиана делит треугольник на 2 равновеликих треугольника, площадь АМН=площадь МНС=21, площадь АНС=площадьАМН+площадьМНС=21+21=42, треугольник АВС, АН-медиана (ВН=НС), тогда плошщадь АВН=площадьАНС=42, площадьАВС=площадь АВН+площадьАНС=42+42=84
16. площади подобных многоугольников относятся как периметры в квадрате, 16/49=периметр1 в квадрате/1225, периметр1 в квадрате=16*1225/49=400, периметр1=20
17. треугольник АРД подобен треугольнику ВРС по двум равным углам, уголР-общий, уголА=уголРВС как соответственные, площади подобных треугольников относятся как отношение квадратов подобных сторон, площадь ВРС/площадьАРД=ВС в квадрат/АД в квадрате, площадьВРС/80=9/16, площадьВРС=80*9/16=45, площадьАВСД=площадьАРД-площадьВРС=80-45=35
18, треугольник АВС, АВ=Вс=20, АС=32, проводим высоту ВН=медиане, АН=НС=1/2АС=32/2=16, треугольник АВН прямоугольній, ВН=корень(Ав в квадрате-АН в квадрате)=корень(400-256)=12, tgA=ВН/АН=12/16=3/4=0,75
19. треугольник АВС, уголС=90, ВС=2, АС=4,, АВ=корень(АС в квадрате+ВС в квадрате)=корень(16+4)=2*корень5, cosB=ВС/АВ=2/(2*корень5)=корень5/5
ответ: ∠АОС=120°; Р=18
Объяснение: Центром окружности, вписанной в треугольник, является точка пересечения его биссектрис.
Сумма углов треугольника 180° ⇒ ∠САВ+∠ВСА=180°-60°=120°. Биссектрисы АО и СО делят эти углы пополам, следовательно, 0,5∠ОАС+0,5∠ОСА=120°:2=60°.
Из суммы углов треугольника угол АОС=180°-60°=120°
Стороны треугольника - касательные для вписанной окружности. Отрезки касательных от точки вне окружности до точек касания равны (свойство). ⇒ АМ=AK=4, BN=BM=2, CN=CK=3. ⇒ Р=2•(2+3+4)=18 (ед. длины)
Примечание. Обозначения в решении даны согласно условию и рисунку к нему. Но, хотя ответ тот же, по данным в условии величинам не получится построить соразмерный рисунок. Должен быть при ∠В=60° отрезок СК=2, а ВМ=3. . (См. рисунок приложения).
15. треугольник АВС, МН-средняя линия , площадь АМН=21, треугольник АНС , НМ-медиана (АМ=МС), медиана делит треугольник на 2 равновеликих треугольника, площадь АМН=площадь МНС=21, площадь АНС=площадьАМН+площадьМНС=21+21=42, треугольник АВС, АН-медиана (ВН=НС), тогда плошщадь АВН=площадьАНС=42, площадьАВС=площадь АВН+площадьАНС=42+42=84
16. площади подобных многоугольников относятся как периметры в квадрате, 16/49=периметр1 в квадрате/1225, периметр1 в квадрате=16*1225/49=400, периметр1=20
17. треугольник АРД подобен треугольнику ВРС по двум равным углам, уголР-общий, уголА=уголРВС как соответственные, площади подобных треугольников относятся как отношение квадратов подобных сторон, площадь ВРС/площадьАРД=ВС в квадрат/АД в квадрате, площадьВРС/80=9/16, площадьВРС=80*9/16=45, площадьАВСД=площадьАРД-площадьВРС=80-45=35
18, треугольник АВС, АВ=Вс=20, АС=32, проводим высоту ВН=медиане, АН=НС=1/2АС=32/2=16, треугольник АВН прямоугольній, ВН=корень(Ав в квадрате-АН в квадрате)=корень(400-256)=12, tgA=ВН/АН=12/16=3/4=0,75
19. треугольник АВС, уголС=90, ВС=2, АС=4,, АВ=корень(АС в квадрате+ВС в квадрате)=корень(16+4)=2*корень5, cosB=ВС/АВ=2/(2*корень5)=корень5/5