Пусть основание прямоугольного параллелепипеда прямоугольник ABCD . AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см. обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh. По теореме Пифагора для треугольников ABB₁ и ADD₁: { AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁². { x²+h² =13² ; (7x)² +h²=37². Вычитаем из второго уравнения системы первое (7x)² -x² =37² -13²; 48x² =(37-13)(37+13) ; 2*24x² =24*2*25⇒x =5 ; h =√(13² -5²) =12. S бок =16xh =16*5*12 =16*60 =960 (см²).
AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см.
обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh.
По теореме Пифагора для треугольников ABB₁ и ADD₁:
{ AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁².
{ x²+h² =13² ; (7x)² +h²=37².
Вычитаем из второго уравнения системы первое
(7x)² -x² =37² -13²;
48x² =(37-13)(37+13) ;
2*24x² =24*2*25⇒x =5 ;
h =√(13² -5²) =12.
S бок =16xh =16*5*12 =16*60 =960 (см²).
ответ: 960 см².
Пусть А - точка, не принадлежащая плоскости α.
АВ = 15 см и АС = 17 см - наклонные, АН - перпендикуляр к плоскости α..
Тогда ВН и СН - проекции наклонных на плоскость.
Из двух наклонных, проведенных из одной точки, большую проекцию имеет большая наклонная.
Пусть ВН = х, СН = х + 4
ΔАВН и ΔАСН прямоугольные. По теореме Пифагора выразим из них АН:
АН² = АВ² - ВН² = 225 - х²
АН² = АС² - СН² = 289 - (х + 4)²
225 - х² = 289 - (х + 4)²
225 - x² = 289 - x² - 8x - 16
8x = 48
x = 6
ВН = 6 см
СН = 10 см
Объяснение:
надеюсь то)