Побудуйте довільний трикутник і трикутник, симетричний даному, відносно прямої, якщо вона: а) розміщена поза трикутником; б) має лише одну спільну точку з трикутником; в) перетинае дві сторони трикутника. 2. Чотирикутник АВСD заданий координатами своїх вершин: А(1;B 1); В(-3;B 2), C(-1; -2), D(5; -3). Знайдіть координати вершин чотирикутника
Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС:
угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС)
далее возьмем прямоугольный треугольник АНС где АН- высота:
угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30
тогда угол НАС равен
180-90-30=60
АН=2
найдем сторону НС:
по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3=
2 корня из 3
окей, далее найдем АС она же является диагональю трапеции:
АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4
готово, осталось посчитать:
S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате
(x-2)² +(y+2)²=52
x-2=0
Объяснение:
a) Общая формула окружности
(x-a)² + (y-b)² =R² (1), где a и b соответственно абсцисса и ордината центра окружности, а R - радиус окружности.
Очевидно, что центр окружности О находится точно в середине отрезка MN. Найдем координаты О.
=((Хm+Xn)/2 ; (Ym+Yn)/2) = ( (-4+8)/2; (2+(-6))/2)= (2;-2)
Очевидно , что радиус окружности равен половине длины отрезка MN, так как MN в данном случае является диаметром окружности.
Найдем MN = sqrt ( (Xn-Xm)² + (Yn-Ym)²) = sqrt ((8-(-4))²+ (-6-2)²)=
sqrt(144+64)=sqrt(208)= 2*sqrt(52)
R= MN/2= sqrt(52)
Подставляем найденные координаты точки О и значение радиуса R=sqrt(52) в уравнение (1) . Получим:
(x-2)²+(y+2)²=52
Общее уравнение прямой Ax+By+C=0
Так как искомая прямая параллельна оси ординат, то В=0
Тогда можем записать, что х= -С/A
Нам известно, что прямая проходит через О (2;-2), т.е.
x=-C/А=2
Окончательное уравнение прямой
х=2 , либо х-2=0