Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
1) площадь квадрата равна площади ромба
найдём площадь ромба
пусть у нас ромб АВСД, АВ=6 см
ВД=диагональ
О центр ромба
угол АВО=60
расмотрим треугольник АВО
он прямоугольнвый
АВ гипотенуза
ВО- катет
угол АВО=60 град
ВО=AB*cos60=6*1/2=3 см
площадь треугольника будет 1/2*ВО*AO
AO=AB*sin 60=6*корень(3)/2=3*корень 3
площадь ромба будет равно площади 4 таких треугольников, то мы получим, просто 2*BO*AO=18*корень(3)
а площадь квадрата будет, сторона в квадрате
тогда получим просто, что сорона равна корень 18*корень(3)=3*2^(0.5)*3^(0.25)=3 умножить на квадратный корень с 2 и умножить на корень 4 степени с 3
2)
этот треугольник равнобедренный, так как третий угол равен 180-90-45=45
один екатет основа
другой высота
площадь равна половине произведению высоты на основу
от тут мы знаем что каеты равны
по факту половина квадрата катета
катет равен=гипотенуза* cos45=10*корень (2)/2=5*корень с 2-ух
тогда имеем, что площадь равна 1/2 *(катет)^2=1/2(5^2*2)= 1/2*50=кв. 25 см
єто и есть ответ
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.