В данной пирамиде в основании лежит правильный шестиугольник. В нём АВ║СF, значит угол между СО и плоскостью SBC такой же, как и между стороной АВ и той же плоскостью. SM - апофема грани SBC, OK⊥SM, SM∈SBC, значит СК⊥ОК. Тр-ник СКО прямоугольный, значит ∠КСО - угол между СО и плоскостью SBC. Тр-ник ВОС равносторонний. СО=ВС=1. ОМ - высота правильного тр-ка. ОМ=а√3/2=ВС√3/2=√3/2. В тр-ке SMB BM=BC/2=0.5. SM=√(SB²-BM²)=√(4-0.25)=√3.75. В тр-ке SMO cosM=OM/SM=√3/(2√3.75). sin²M=1-cos²M=1-3/15=12/15. В тр-ке ОКМ ОК=ОМ·sinM=√3·√12/(2√15)=3/√15=√15/5. В тр-ке СКО sin(КСО)=КО/СО=√15/5. ∠КСО=arcsin√15/5≈50.8° - это ответ.
SM - апофема грани SBC, OK⊥SM, SM∈SBC, значит СК⊥ОК.
Тр-ник СКО прямоугольный, значит ∠КСО - угол между СО и плоскостью SBC.
Тр-ник ВОС равносторонний. СО=ВС=1.
ОМ - высота правильного тр-ка. ОМ=а√3/2=ВС√3/2=√3/2.
В тр-ке SMB BM=BC/2=0.5. SM=√(SB²-BM²)=√(4-0.25)=√3.75.
В тр-ке SMO cosM=OM/SM=√3/(2√3.75).
sin²M=1-cos²M=1-3/15=12/15.
В тр-ке ОКМ ОК=ОМ·sinM=√3·√12/(2√15)=3/√15=√15/5.
В тр-ке СКО sin(КСО)=КО/СО=√15/5.
∠КСО=arcsin√15/5≈50.8° - это ответ.
1) 1. рассмотрим АДС-прямоугольный (АД-высота) АД=24см ДС=18см . по тПифагора СА=sqrt24^2+18^2=30cm
2. из соотношения сторон и высоты к гипотенузе прямоугольного треугольника имеем
АС^2=CD*CB CB=AC^2 / CD CB=30^2 / 18= 50cm ДВ=50-18=32см
АВ^2 =DB*CB AB^2=50*32=1600cm^2 AB=40cm
можно было проще : египетский треугольник , соотношение сторон 3:4:5
у АВС АС=30см СВ=50см АС:АВ:СВ =3:4:5=30 :40:50 АВ= 40см
3. сos A -?????? cos90* =0
cosCBA= BA /BC cosBCA=CA/BC cosBAD=BD / BA cosDAC=DA/CA =24 /30=4/5
подставь длинну катета и гипотенузы и вычисли
2) АВСД- трапеция угА=угВ=90*, ВС=3см, СД=4см угВСД=150*
1)проведем СН-высота угВСН=СНА=90* угНСД=150*-90*=60* АН=3см
2)рассмотрим треугольник НСД-прямоугольный угСНД=90* угНСД=60* значт угНДС=30*
напротив угла 30* лежит сторона = 1/2 гипотенузы , отсюда СН=1/2СД =2см
по т Пифагора НД=sqrt (4^2-2^2)=2sqrt3 (2 корня из3)
3) Sтрап =( (a+b) /2 ) * h
S(ABCD) = (3+3+2sqrt3) / 2) *2 =(6+2sqrt3) cm^2
3) Sпрямоуг= а*в
пусть а=АД в=СД
рассмотримАСД-прямоугольный угД=90* САД=37* cos37*= a /c sin37*=b/c
a=3 cos37* b=3 sin37*
S= 3 cos37* * 3 sin37* = 9 * 1/2 sin(37*2)= 4.5 sin74*