Центр окружности, проходящей через точки А и В, равноудален от этих точек. А все точки, равноудаленные от концов отрезка АВ, лежат на серединном перпендикуляре к нему. Т.е. центр окружности, проходящей через точки А и В, лежит на серединном перпендикуляре к отрезку АВ.
Наименьшее расстояние от точек А и В до прямой а - длина перпендикуляра, проведенного к а, т.е. R = HA = HB = 1 см. Если же центр окружности не совпадает с точкой Н, то радиус будет больше, чем НА (гипотенуза ОА в прямоугольном треугольнике АОН больше катета НА).
Рассмотрим треугольник ADC, где угол D - прямой по правилу прямоугольника
Значит треугольник ADC - прямоугольный. В нём известен угол 30 градусов, а мы знаем, что катет, лежащий против угла 30 градусов, равен половине гипотенузы. Значит DC = AC/2 = 4
Теперь найдём катет AD по теореме Пифагора:
AD^2 = AC^2 - DC^2
AD^2 = 64 - 16 = 48
AD = √48 = 4√3 (представили 48, как 16*3 и вынесли корень из 16)
Теперь найдём площадь прямоугольника по формуле: S = ab
S = CD * AD = 4√3 * 4 = 16√3
ответ: 16√3
2. Дан квадрат и его диагональ
Рассмотрим треугольник ABC, где угол B - прямой по правилу квадрата.
Значит треугольник ADC - прямоугольный. Катеты в нём равны, можем обозначить за х
Получается: AB = BC = x
Их можно найти по теореме Пифагора:
AB^2 + BC^2 = AC^2
x^2 + x^2 = 16
2x^2 = 16
x^2 = 8
x = √8 = 2√2 (представили 8, как 4*2 и вынесли корень из 4)
Обе эти стороны равны 2√2, можем найти площадь квадрата по формуле S = a² = (2√2)² = 4 * 2 = 8
Центр окружности, проходящей через точки А и В, равноудален от этих точек. А все точки, равноудаленные от концов отрезка АВ, лежат на серединном перпендикуляре к нему. Т.е. центр окружности, проходящей через точки А и В, лежит на серединном перпендикуляре к отрезку АВ.
Наименьшее расстояние от точек А и В до прямой а - длина перпендикуляра, проведенного к а, т.е. R = HA = HB = 1 см. Если же центр окружности не совпадает с точкой Н, то радиус будет больше, чем НА (гипотенуза ОА в прямоугольном треугольнике АОН больше катета НА).
1. Дан прямоугольник и его диагональ
Рассмотрим треугольник ADC, где угол D - прямой по правилу прямоугольника
Значит треугольник ADC - прямоугольный. В нём известен угол 30 градусов, а мы знаем, что катет, лежащий против угла 30 градусов, равен половине гипотенузы. Значит DC = AC/2 = 4
Теперь найдём катет AD по теореме Пифагора:
AD^2 = AC^2 - DC^2
AD^2 = 64 - 16 = 48
AD = √48 = 4√3 (представили 48, как 16*3 и вынесли корень из 16)
Теперь найдём площадь прямоугольника по формуле: S = ab
S = CD * AD = 4√3 * 4 = 16√3
ответ: 16√3
2. Дан квадрат и его диагональ
Рассмотрим треугольник ABC, где угол B - прямой по правилу квадрата.
Значит треугольник ADC - прямоугольный. Катеты в нём равны, можем обозначить за х
Получается: AB = BC = x
Их можно найти по теореме Пифагора:
AB^2 + BC^2 = AC^2
x^2 + x^2 = 16
2x^2 = 16
x^2 = 8
x = √8 = 2√2 (представили 8, как 4*2 и вынесли корень из 4)
Обе эти стороны равны 2√2, можем найти площадь квадрата по формуле S = a² = (2√2)² = 4 * 2 = 8
ответ: 8
Оставляю эти 2, дальше время поджимает