Тр-кBKE и тр-кABC подобны по равным углам. (соответственные углы при пересечении параллельных прямых секущей). В подобных тр-ках отношение площадей равно квадрату коэффицента подобия. Отношение медиан - коэффиценту подобия. КЕ проходит через точку О пересечения медиан. Медиана ВР делится точкой О в отношении 2:1, т.е. ВО\ОР=2\1 значит ВО\ВР=2\3 - коэффицент подобия. КЕ\АС=2\3 АС=12*3\2=18см Sbke\Sabc=4\9 Sbke=4*72\9=32cm² BO\BP является отношением медиан, тк ВО медиана ВКЕ (Медиана ВР делит тр-к АВС и ВКЕ на два треугольника, которые попарно подобны с коэф-м 2\3 , из соотношения подобия следует КО=ОЕ)
Пусть дана окружность с центром О и в нее вписан треугольник ABC. Соединим центр окружности О с вершинами A и B треугольника, а также опустим высоту ОE на сторону AB с центра окружности. Рассмотрим треугольник OEB, OE перпендикулярна AB, то есть угол OEB – прямой, OB=R (радиусу вписанной окружности) и OE=R/2 (по условию). Тогда по теореме Пифагора (EB)^2=(OB)^2-(OE)^2=R^2-R^2/4=3R^2/4 EB=R*sqrt(3)/2 Рассмотрим треугольник AEO. Он равен треугольнику OEB, поскольку AO=OB=R и OE- общая сторона. Тогда и AE=R*sqrt(3)/2, а значит AB=AE+EB= R*sqrt(3)/2+ R*sqrt(3)/2=R*sqrt(3) Поскольку в равносторонем треугольнике сторона равна R*sqrt(3), то и наше утверждение доказано
Sbke\Sabc=4\9 Sbke=4*72\9=32cm² BO\BP является отношением медиан, тк ВО медиана ВКЕ (Медиана ВР делит тр-к АВС и ВКЕ на два треугольника, которые попарно подобны с коэф-м 2\3 , из соотношения подобия следует КО=ОЕ)