Cумма односторонних углов при параллельных прямых равна 180°.
∠A+∠B=180° <=>
180° -2∠AMD +180° -2∠BMC =180° <=>
∠AMD+∠BMC =180°/2 =90°
∠CMD= 180°-∠AMD+∠BMC =180°-90° =90°
ИЛИ
Средняя линия MN делит ABCD на два равных параллелограмма. Основания ABCD равны половинам его сторон, следовательно BMNC и AMND - ромбы. Диагонали ромба являются биссектрисами его углов.
MB= AB/2
BC/AB=1/2 <=> BC= AB/2 =MB
△BMC - равнобедренный.
∠BMC=∠BCM
Аналогично ∠AMD=∠ADM
∠A= 180°-∠AMD-∠ADM =180°-2∠AMD
∠B= 180°-∠BMC-∠BCM =180°-2∠BMC
Cумма односторонних углов при параллельных прямых равна 180°.
∠A+∠B=180° <=>
180° -2∠AMD +180° -2∠BMC =180° <=>
∠AMD+∠BMC =180°/2 =90°
∠CMD= 180°-∠AMD+∠BMC =180°-90° =90°
ИЛИ
Средняя линия MN делит ABCD на два равных параллелограмма. Основания ABCD равны половинам его сторон, следовательно BMNC и AMND - ромбы. Диагонали ромба являются биссектрисами его углов.
∠CMD =∠CMN+∠DMN =∠BMN/2+∠AMN/2 =180/2 =90.
Объяснение:
Объяснение:
Если основание равно 5 см...
Периметр равнобедренного треугольника находится по формуле:
Р=2а+b, где а–бококая сторона, b–основание.
Подставим известные значения:
19=2а+5
2а=19–5
2а=14
а=7
Значит боковая сторона равна 7 см.
Если боковая сторона равна 7 см...
Периметр равнобедренного треугольника находится по формуле:
Р=2а+b, где а–бококая сторона, b–основание.
Подставим известные значения:
19=2*7+b
19=14+b
b=19–14
b=5
Тогда основание равно 5 см.
Если основание больше боковой стороны на 1 см...
Периметр равнобедренного треугольника находится по формуле:
Р=2а+b, где а–бококая сторона, b–основание.
Пусть боковая сторона равна х, тогда основание х+1,
Тогда периметр будет находиться по формуле:
Р=2х+х+1
Р=3х+1
Подставим известное значение:
19=3х+1
19–1=3х
3х=18
х=6
Тогда боковая сторона равна 6 см.
ответ: 1-7, 2-5, 3-6.