Назовем этот треугольник АВС. Он равнобедренный, так что АВ = ВС.
Формула площади треугольника:
S = ah/2, при h — высота треугольника, а — сторона, на которую эта высота опускается.
В данном случае, нам неизвестна высота. Проведём ее и назовем ВМ.
Как мы знаем, высота в равнобедренном треугольнике также является медианой и биссектрисой. Следовательно, треугольник АВС = треугольнику МВС. Т.к. это высота, то она образует у основания 2 прямых угла, равных 90°, следовательно, мы получаем два прямоугольных треугольника. Медиана делит сторону, на которую опускается, на две равные части, значит АМ = МС = 42:2 = 21.
Рассмотрим треугольник АВМ. ВМ и АМ - катеты, АВ - гипотенуза. Нам нужен катет ВМ. По теореме Пифагора:
ВМ = √(АВ² - АМ²) = √(35² - 21²) = √(1225 - 441) = √784 = 28 - это у нас долгожданная высота. Теперь с уверенностью вставляем данные в формулу:
1. ∠AOD = 72°
2. 90°, 90°, 160°
3. a = 5 см
b = 10 см
4. ∠A = ∠D = 48°
∠С = ∠В = 132°
5. BD = 8 см
Объяснение:
1. Диагонали прямоугольника равны и точкой пересечения делятся пополам.
АО = ВО = ОС = OD
ΔАВС равнобедренный с основанием АВ. Углы при основании равны:
∠АВО = ∠ВАО = 36°
∠AOD - внешний для треугольника АОВ, значит равен сумме двух внутренних, не смежных с ним:
∠AOD = ∠АВО + ∠ВАО = 36° · 2 = 72°
2. В прямоугольной трапеции два угла по 90°, так как боковая сторона перпендикулярна основаниям.
Сумма углов трапеции, прилежащих к боковой стороне, равна 180°.
Если ∠А = 20°, то
∠В = 180° - ∠А = 180° - 20° = 160°
3. Противоположные стороны параллелограмма равны.
Пусть х - одна сторона, тогда другая сторона 2х.
P = 2(a + b)
2(x + 2x) = 30
3x = 15
x = 5
a = 5 см
b = 2 · 5 = 10 см
4. Углы при основании равнобедренной трапеции равны.
Тогда ∠A = ∠D = 96 : 2 = 48°.
Сумма углов, прилежащих к боковой стороне трапеции, равна 180°.
∠В = 180° - ∠А = 180° - 48° = 132°
∠С = ∠В = 132°
5. Сумма острых углов прямоугольного треугольника равна 90°.
ΔАВМ: ∠А = 90° - 30° = 60°
Стороны ромба равны, значит ΔABD равнобедренный; угол при его вершине равен 60°, значит он равносторонний.
Тогда ВМ - его высота и медиана:
MD = AM = 4 см
AD = 8 см
BD = AD = 8 см
S=588
Объяснение:
Назовем этот треугольник АВС. Он равнобедренный, так что АВ = ВС.
Формула площади треугольника:
S = ah/2, при h — высота треугольника, а — сторона, на которую эта высота опускается.
В данном случае, нам неизвестна высота. Проведём ее и назовем ВМ.
Как мы знаем, высота в равнобедренном треугольнике также является медианой и биссектрисой. Следовательно, треугольник АВС = треугольнику МВС. Т.к. это высота, то она образует у основания 2 прямых угла, равных 90°, следовательно, мы получаем два прямоугольных треугольника. Медиана делит сторону, на которую опускается, на две равные части, значит АМ = МС = 42:2 = 21.
Рассмотрим треугольник АВМ. ВМ и АМ - катеты, АВ - гипотенуза. Нам нужен катет ВМ. По теореме Пифагора:
ВМ = √(АВ² - АМ²) = √(35² - 21²) = √(1225 - 441) = √784 = 28 - это у нас долгожданная высота. Теперь с уверенностью вставляем данные в формулу:
S = (42 × 28)/2 = 1176/2 = 588