Древнеегипетская астрономия уходит в глубокую старину: египтяне были одними из первых, кто вёл наблюдения звёздного неба; авторы МЭСБЕ ставят их астрономию в один ряд с китайской[en], индийской и вавилонской (халдеи)[1]. В Египте и общавшихся с ним странах установился довольно точный определения времени года посредством гелиакического восхода звезды Сириус, — летосчисление глубокой древности. Служа для определения времени года, восход или заход определённой звёзды мог служить также и для оценки часа ночи[2]. Египтяне первыми определили год в 365 дней и 6 часов[3].
Для египтян разлив священной реки Нил — земного отражения небесного Млечного Пути[4] — всегда совпадал с восходом Сириуса[5]. Появление Сириуса повторяется через правильные промежутки времени, а именно через каждые 365 1/4 дней[6]. Каждые четыре года Сириус восходил днём позже, из-за чего через 365 х 4 = 1460 лет разница между гражданским календарём (360 дней + пять дней-эпагоменов) и солнечным годом достигала целого года[5], который и прибавлялся к 1460 годам, образуя цикл из 1461 солнечного года[6]. Весь 1461-й год сириусного цикла (сотического[en] — по греческому именованию звезды) считался одним днём Сириуса и превращался в годовой праздник египетского народа[7]. Также каждый восход Сириуса сопровождался известными празднествами, хотя и не приходился на день гражданского Нового года. В древнеегипетских надписях сохранились данные о восходе Сириуса.[5]
Библейское Пятикнижие, переданное египетским жрецом Моисеем (ок. XV века до н. э.), включает космогонические знания. Греческая античная астрономия (VI век до н. э. — V век н. э.) стала плодом учёных мужей, обучавшихся у египетских жрецов (Фалес, Пифагор, Демокрит, Аристарх, Евдокс и др.)[3]
В правильной треугольной пирамиде боковое ребро равно 7, а сторона основания 4,5. Найдите высоту. Сделаем рисунок. Пусть это будет пирамида МАВС. Основание высоты правильной треугольной пирамиды совпадает с центром описанной ( как, впрочем, и вписанной) окружности вокруг основания ( правильного треугольника). Радиус описанной окружности можно выразить через сторону треугольника R=a/√3 Тогда высоту пирамиды МО найдем по т. Пифагора: МО²=МС²-ОС² МО²=49- а²/3 МО²=(147-20,25):3=126,75:3=42,25 МО=√42,25=6,5
Древнеегипетская астрономия уходит в глубокую старину: египтяне были одними из первых, кто вёл наблюдения звёздного неба; авторы МЭСБЕ ставят их астрономию в один ряд с китайской[en], индийской и вавилонской (халдеи)[1]. В Египте и общавшихся с ним странах установился довольно точный определения времени года посредством гелиакического восхода звезды Сириус, — летосчисление глубокой древности. Служа для определения времени года, восход или заход определённой звёзды мог служить также и для оценки часа ночи[2]. Египтяне первыми определили год в 365 дней и 6 часов[3].
Для египтян разлив священной реки Нил — земного отражения небесного Млечного Пути[4] — всегда совпадал с восходом Сириуса[5]. Появление Сириуса повторяется через правильные промежутки времени, а именно через каждые 365 1/4 дней[6]. Каждые четыре года Сириус восходил днём позже, из-за чего через 365 х 4 = 1460 лет разница между гражданским календарём (360 дней + пять дней-эпагоменов) и солнечным годом достигала целого года[5], который и прибавлялся к 1460 годам, образуя цикл из 1461 солнечного года[6]. Весь 1461-й год сириусного цикла (сотического[en] — по греческому именованию звезды) считался одним днём Сириуса и превращался в годовой праздник египетского народа[7]. Также каждый восход Сириуса сопровождался известными празднествами, хотя и не приходился на день гражданского Нового года. В древнеегипетских надписях сохранились данные о восходе Сириуса.[5]
Библейское Пятикнижие, переданное египетским жрецом Моисеем (ок. XV века до н. э.), включает космогонические знания. Греческая античная астрономия (VI век до н. э. — V век н. э.) стала плодом учёных мужей, обучавшихся у египетских жрецов (Фалес, Пифагор, Демокрит, Аристарх, Евдокс и др.)[3]
Сделаем рисунок.
Пусть это будет пирамида МАВС.
Основание высоты правильной треугольной пирамиды совпадает с центром описанной ( как, впрочем, и вписанной) окружности вокруг основания ( правильного треугольника).
Радиус описанной окружности можно выразить через сторону треугольника R=a/√3
Тогда высоту пирамиды МО найдем по т. Пифагора:
МО²=МС²-ОС²
МО²=49- а²/3
МО²=(147-20,25):3=126,75:3=42,25
МО=√42,25=6,5