Эта фигура получится - трапеция)) т.к. радиусы перпендикулярны ВМ (касательной) и, следовательно, они параллельны-они будут основаниями трапеции, отрезок касательной будет высотой трапеции (EF). радиусы окружностей можно найти через площадь треугольников, в которые окружности вписаны, площадь этих треугольников вычисляется или по формуле Герона (т.к. все стороны в них известны) или как половина произведения двух сторон на синус угла между ними (углы известны из равностороннего треугольника 60° ) высота трапеции находится из прямоугольных треугольников (с катетами-радиусами), гипотенузы которых будут биссектрисами углов (АО1; СО2; т.к. центр вписанной окружности=точка пересечения биссектрис углов треугольника) отрезки касательных к окружности, проведенных из одной точки, равны))
сторона треугольника=периметр/3=12*корень3/3=4*корень3, радиус вписанной окружности=сторона*корень3/6=4*корень3*корень3/6=2
треугольник АВС, уголС=90, ВС=12, О-центр вписанной окружнности проводим радиусы перпендикулярные в точки касания, ОН на ВС, ОМ на АС, К-точка касания на АВ, МОНС квадрат, ОН=ОМ=НС=МС=радиус=5, ВМ=ВС-НС=12-5=7, ВН=ВК=7 как касательные проведенные из одной точки, АМ=АК=х как касательные..., АВ=АК+ВК=х+7, АС=АМ+МС=х+5, АВ в квадрате=АС в квадрате+ВС в квадрате, х в кадрате+14х+49=х в квадрате=10х+25+144, 4х=120, х=30, АС=30+5=35, АВ=30+7=37, периметрАВС=37+35+12=84
т.к. радиусы перпендикулярны ВМ (касательной) и, следовательно, они параллельны-они будут основаниями трапеции,
отрезок касательной будет высотой трапеции (EF).
радиусы окружностей можно найти через площадь треугольников, в которые окружности вписаны,
площадь этих треугольников вычисляется или по формуле Герона (т.к. все стороны в них известны) или как половина произведения двух сторон на синус угла между ними (углы известны из равностороннего треугольника 60° )
высота трапеции находится из прямоугольных треугольников (с катетами-радиусами), гипотенузы которых будут биссектрисами углов (АО1; СО2; т.к. центр вписанной окружности=точка пересечения биссектрис углов треугольника)
отрезки касательных к окружности, проведенных из одной точки, равны))
сторона треугольника=периметр/3=12*корень3/3=4*корень3, радиус вписанной окружности=сторона*корень3/6=4*корень3*корень3/6=2
треугольник АВС, уголС=90, ВС=12, О-центр вписанной окружнности проводим радиусы перпендикулярные в точки касания, ОН на ВС, ОМ на АС, К-точка касания на АВ, МОНС квадрат, ОН=ОМ=НС=МС=радиус=5, ВМ=ВС-НС=12-5=7, ВН=ВК=7 как касательные проведенные из одной точки, АМ=АК=х как касательные..., АВ=АК+ВК=х+7, АС=АМ+МС=х+5, АВ в квадрате=АС в квадрате+ВС в квадрате, х в кадрате+14х+49=х в квадрате=10х+25+144, 4х=120, х=30, АС=30+5=35, АВ=30+7=37, периметрАВС=37+35+12=84