Дано: ABCD - трапеция; AD║BC; ∠ABC = 160°; ∠BCD = 110° FG = 8 - средняя линия NE = 3; BN=NC; AE=ED
Продлить стороны AB и DC ⇒ получился ΔBMC ∠MBC = 180° - ∠ABC = 180°-160° = 20° ∠BCM = 180° - ∠BCD = 180°-110° = 70° ∠BMC = 180° - ∠MBC - ∠BCM = 180° - 20° - 70° = 90° ⇒ ΔBMC - прямоугольный ⇒ медиана MN равна половине гипотенузы BC MN = BN = NC = X ⇒ ΔMNC - равнобедренный
BC║FG - средняя линия трапеции ⇒ ΔKMG подобен ΔNMC по двум соответственным углам ⇒ MK = KG ⇒ X + ЕN/2 = FG/2 X = 4 - 1,5 = 2,5 BC = 2X = 5 Средняя линия FG = (BC + AD)/2 = 8 BC + AD = 16; AD = 16 - 5 = 11
А(-3; 1) В(1; -2) С(-1; 0)
1) Координаты вектора АВ
АВх = хВ - хА = 1 + 3 = 4
АВу = уВ - уА = -2 - 1 = -3
АВ(4; -3)
Координаты вектора АС
АСх = хС - хА = -1 + 3 = 2
АСу = уС - уА = 0 - 1 = -1
АС(2; -1)
2) Модуль вектора АВ
|AB| = √(АВх² + АВy²) = √(4² + (-3)²) = 5
Модуль вектора АC
|AC| = √(АCх² + АCy²) = √(2² + (-1)²) = √5
3) Cкалярное произведение векторов АВ и АС
АВ · АС = АВх · АСх + АВу · АСу = 4 · 2 + (-3 · (-1)) = 11
4) Косину угла между векторами АВ и АС
cos α = AB · AC : (|AB| · |AC|) = 11 : (5√5)= (11√5) /25
FG = 8 - средняя линия
NE = 3; BN=NC; AE=ED
Продлить стороны AB и DC ⇒ получился ΔBMC
∠MBC = 180° - ∠ABC = 180°-160° = 20°
∠BCM = 180° - ∠BCD = 180°-110° = 70°
∠BMC = 180° - ∠MBC - ∠BCM = 180° - 20° - 70° = 90° ⇒
ΔBMC - прямоугольный ⇒
медиана MN равна половине гипотенузы BC
MN = BN = NC = X ⇒ ΔMNC - равнобедренный
BC║FG - средняя линия трапеции ⇒
ΔKMG подобен ΔNMC по двум соответственным углам ⇒
MK = KG ⇒ X + ЕN/2 = FG/2
X = 4 - 1,5 = 2,5
BC = 2X = 5
Средняя линия FG = (BC + AD)/2 = 8
BC + AD = 16; AD = 16 - 5 = 11
Основания трапеции равны 5 и 11