A C По условию треугольник АВС равнобедренный, следовательно АВ=АС угол А=углу С Так как сумма углов=180°, а угол В=120°, то угол А+угол С=180°-120°=60°, тогда угол А=углу С=30°. Рассмотрим треугольник АНС, он прямоугольный ( высота проводится под углом 90° ) Угол С=30°, АС (гипотенуза)=12, тогда по свойству, против угла в 30° лежит катет, равный половине гипотенузы, АН=12:2=6 ответ: 6
В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см
/\
/ \ H
/ / \
/ / \
/ / \
A C
По условию треугольник АВС равнобедренный, следовательно АВ=АС
угол А=углу С
Так как сумма углов=180°, а угол В=120°, то угол А+угол С=180°-120°=60°,
тогда угол А=углу С=30°.
Рассмотрим треугольник АНС, он прямоугольный ( высота проводится под углом 90° )
Угол С=30°, АС (гипотенуза)=12, тогда по свойству, против угла в 30° лежит катет, равный половине гипотенузы, АН=12:2=6
ответ: 6