Объяснение:
Дано:
АH=12 см, АВ=13 см, D = 26 = 2r
BC = ?
описанная окружность с центром на серединных перпендикуляров .
для вписанного в окружность Δ R= (a*b*c)/ (2S)
АК = КС = 1/2 *АС; АМ = МВ = 1/2 *АВ
из ΔАОМ ; ОМ = √(АО^2 - AM^2) = √(13^2 - (13/2)^2)= √[(13^2* (1- 1/4)]
OM = 6.5√3 то есть АО- гипотенуза, АМ - 1/2*АО , ⇒ ∠АОМ = 30° .
ΔАОВ - равнобедренный АО = ОВ, ∠ОАВ = ∠ОВА = 60 ⇒ ΔАОВ-равносторонний, ⇒ ΔАВС равнобедренный, СМ =медиана, биссектриса, высота. (см рис.2) ⇒ AC = BC
( из ΔBHС ) BH = √(AB^2-BH^2) = √(13^2 - 12^) = √(13+12)(13-12)=√25 = 5
ΔBHA и Δ СКО подобны как Δ с взаимно ⊥ сторонами, а именно
R= (a*b*c)/ (4S) = AC^2* AB / (4SΔавс)
SΔавс 4 1/2*BH*AC
А(-3; 1) В(1; -2) С(-1; 0)
1) Координаты вектора АВ
АВх = хВ - хА = 1 + 3 = 4
АВу = уВ - уА = -2 - 1 = -3
АВ(4; -3)
Координаты вектора АС
АСх = хС - хА = -1 + 3 = 2
АСу = уС - уА = 0 - 1 = -1
АС(2; -1)
2) Модуль вектора АВ
|AB| = √(АВх² + АВy²) = √(4² + (-3)²) = 5
Модуль вектора АC
|AC| = √(АCх² + АCy²) = √(2² + (-1)²) = √5
3) Cкалярное произведение векторов АВ и АС
АВ · АС = АВх · АСх + АВу · АСу = 4 · 2 + (-3 · (-1)) = 11
4) Косину угла между векторами АВ и АС
cos α = AB · AC : (|AB| · |AC|) = 11 : (5√5)= (11√5) /25
Объяснение:
Дано:
АH=12 см, АВ=13 см, D = 26 = 2r
BC = ?
описанная окружность с центром на серединных перпендикуляров .
для вписанного в окружность Δ R= (a*b*c)/ (2S)
АК = КС = 1/2 *АС; АМ = МВ = 1/2 *АВ
из ΔАОМ ; ОМ = √(АО^2 - AM^2) = √(13^2 - (13/2)^2)= √[(13^2* (1- 1/4)]
OM = 6.5√3 то есть АО- гипотенуза, АМ - 1/2*АО , ⇒ ∠АОМ = 30° .
ΔАОВ - равнобедренный АО = ОВ, ∠ОАВ = ∠ОВА = 60 ⇒ ΔАОВ-равносторонний, ⇒ ΔАВС равнобедренный, СМ =медиана, биссектриса, высота. (см рис.2) ⇒ AC = BC
( из ΔBHС ) BH = √(AB^2-BH^2) = √(13^2 - 12^) = √(13+12)(13-12)=√25 = 5
ΔBHA и Δ СКО подобны как Δ с взаимно ⊥ сторонами, а именно
R= (a*b*c)/ (4S) = AC^2* AB / (4SΔавс)
SΔавс 4 1/2*BH*AC
А(-3; 1) В(1; -2) С(-1; 0)
1) Координаты вектора АВ
АВх = хВ - хА = 1 + 3 = 4
АВу = уВ - уА = -2 - 1 = -3
АВ(4; -3)
Координаты вектора АС
АСх = хС - хА = -1 + 3 = 2
АСу = уС - уА = 0 - 1 = -1
АС(2; -1)
2) Модуль вектора АВ
|AB| = √(АВх² + АВy²) = √(4² + (-3)²) = 5
Модуль вектора АC
|AC| = √(АCх² + АCy²) = √(2² + (-1)²) = √5
3) Cкалярное произведение векторов АВ и АС
АВ · АС = АВх · АСх + АВу · АСу = 4 · 2 + (-3 · (-1)) = 11
4) Косину угла между векторами АВ и АС
cos α = AB · AC : (|AB| · |AC|) = 11 : (5√5)= (11√5) /25