Початковий та серед 1. Промінь ОС проходить між сторонами АОВ якщо AOC=30°, ВОС-20°. Знайдіть міру AOB. А)60°; Б) 20°; В) 40°; Г) Інша відповідь. по менший від іншого, Знайдіть ці кути.
а) Обозначим буквой E точку пересечения отрезков MK и AB. Углы ∠ALB и ∠LAD равны, как накрест лежащие углы; аналогично ∠CLD = ∠ADL, как накрест лежащие. Отсюда получаем, что ∠BAL = ∠BLA, ∠CDL = ∠CLD, то есть треугольники ABL и CLD равнобедренные (AB = BL, CL = CD). Тогда биссектрисы этих треугольников BM и CK являются также высотами и медианами. Значит, точки M и K являются серединами сторон AL и DL соответственно. Отсюда следует, что отрезок MK является средней линией треугольника ALD. Значит, MK || AD.
Теперь если рассмотреть треугольник ABL, получаем, что отрезок EM параллелен стороне BL и исходит из середины стороны AL. Отсюда следует, что EM является средней линией этого треугольника, а значит точка E — середина стороны AB. Что и требовалось доказать.
б) Рассмотрим 4-угольник MLKN. Из предыдущего пункта получили, что ∠M = 90°, ∠K = 90°, откуда следует, что
То есть у данного 4-угольника суммы противоположных углов дают , откуда следует, что вокруг него можно описать окружность. Соединим точки N и L (пересечение с MK в точке F) — получим 2 прямоугольных треугольника NML и NKL. Тогда центр описанной окружности лежит на середине общей гипотенузы NL.
Теперь заметим, что треугольники MFL и NFK подобны по 2 углам (∠MFL = ∠NFK, как вертикальные; ∠MLF = ∠NKF, как вписанные углы, опирающиеся на одну и ту же дугу MN). Тогда
Аналогично треугольники NMF и KFL подобны по 2 углам (∠NFM = ∠KFL, как вертикальные; ∠MNF = ∠FKL, как вписанные углы, опирающиеся на одну и ту же дугу ML). Тогда
Поделим соотношения друг на друга:
Из подобия треугольников NLC и NFK (по 3-м углам) получим, что Аналогично из подобия треугольников NLB и NFM получим, что , откуда следует:
Обозначим точку пересечения диагоналей О. По свойству ромба его диагонали пересекаются под прямым углом и в точке пересечения делятся пополам. То есть половина меньшей диагонали - 6/2=3см
У ромба все стороны равны, поэтому а = Р/4 = 20/4 = 5см
Рассмотрим один из 4-х равных треугольников. Он прямоугольный.
Его катет а=3см (1/2 меньшей диагонали ромба), а гипотенуза с=5cм (сторона ромба). Тогда по теореме Пифагора c²=a²+b² найдём нужный нам катет (который является половиной большей диагонали):
ответ:Решение.
а) Обозначим буквой E точку пересечения отрезков MK и AB. Углы ∠ALB и ∠LAD равны, как накрест лежащие углы; аналогично ∠CLD = ∠ADL, как накрест лежащие. Отсюда получаем, что ∠BAL = ∠BLA, ∠CDL = ∠CLD, то есть треугольники ABL и CLD равнобедренные (AB = BL, CL = CD). Тогда биссектрисы этих треугольников BM и CK являются также высотами и медианами. Значит, точки M и K являются серединами сторон AL и DL соответственно. Отсюда следует, что отрезок MK является средней линией треугольника ALD. Значит, MK || AD.
Теперь если рассмотреть треугольник ABL, получаем, что отрезок EM параллелен стороне BL и исходит из середины стороны AL. Отсюда следует, что EM является средней линией этого треугольника, а значит точка E — середина стороны AB. Что и требовалось доказать.
б) Рассмотрим 4-угольник MLKN. Из предыдущего пункта получили, что ∠M = 90°, ∠K = 90°, откуда следует, что
То есть у данного 4-угольника суммы противоположных углов дают , откуда следует, что вокруг него можно описать окружность. Соединим точки N и L (пересечение с MK в точке F) — получим 2 прямоугольных треугольника NML и NKL. Тогда центр описанной окружности лежит на середине общей гипотенузы NL.
Теперь заметим, что треугольники MFL и NFK подобны по 2 углам (∠MFL = ∠NFK, как вертикальные; ∠MLF = ∠NKF, как вписанные углы, опирающиеся на одну и ту же дугу MN). Тогда
Аналогично треугольники NMF и KFL подобны по 2 углам (∠NFM = ∠KFL, как вертикальные; ∠MNF = ∠FKL, как вписанные углы, опирающиеся на одну и ту же дугу ML). Тогда
Поделим соотношения друг на друга:
Из подобия треугольников NLC и NFK (по 3-м углам) получим, что Аналогично из подобия треугольников NLB и NFM получим, что , откуда следует:
Окончательно получаем, что
ответ: 5 : 14.
Объяснение:
Большая диагональ равна: 8 см
Объяснение:
Обозначим точку пересечения диагоналей О. По свойству ромба его диагонали пересекаются под прямым углом и в точке пересечения делятся пополам. То есть половина меньшей диагонали - 6/2=3см
У ромба все стороны равны, поэтому а = Р/4 = 20/4 = 5см
Рассмотрим один из 4-х равных треугольников. Он прямоугольный.
Его катет а=3см (1/2 меньшей диагонали ромба), а гипотенуза с=5cм (сторона ромба). Тогда по теореме Пифагора c²=a²+b² найдём нужный нам катет (который является половиной большей диагонали):
b²=c²-a² , = 5²-3² = 25 - 9 = 16
b = √16 = 4cм - половина большей диагонали
Большая диагональ равна: 4×2=8