Рассмотрим треугольник ADC, где угол D - прямой по правилу прямоугольника
Значит треугольник ADC - прямоугольный. В нём известен угол 30 градусов, а мы знаем, что катет, лежащий против угла 30 градусов, равен половине гипотенузы. Значит DC = AC/2 = 4
Теперь найдём катет AD по теореме Пифагора:
AD^2 = AC^2 - DC^2
AD^2 = 64 - 16 = 48
AD = √48 = 4√3 (представили 48, как 16*3 и вынесли корень из 16)
Теперь найдём площадь прямоугольника по формуле: S = ab
S = CD * AD = 4√3 * 4 = 16√3
ответ: 16√3
2. Дан квадрат и его диагональ
Рассмотрим треугольник ABC, где угол B - прямой по правилу квадрата.
Значит треугольник ADC - прямоугольный. Катеты в нём равны, можем обозначить за х
Получается: AB = BC = x
Их можно найти по теореме Пифагора:
AB^2 + BC^2 = AC^2
x^2 + x^2 = 16
2x^2 = 16
x^2 = 8
x = √8 = 2√2 (представили 8, как 4*2 и вынесли корень из 4)
Обе эти стороны равны 2√2, можем найти площадь квадрата по формуле S = a² = (2√2)² = 4 * 2 = 8
1. Дан прямоугольник и его диагональ
Рассмотрим треугольник ADC, где угол D - прямой по правилу прямоугольника
Значит треугольник ADC - прямоугольный. В нём известен угол 30 градусов, а мы знаем, что катет, лежащий против угла 30 градусов, равен половине гипотенузы. Значит DC = AC/2 = 4
Теперь найдём катет AD по теореме Пифагора:
AD^2 = AC^2 - DC^2
AD^2 = 64 - 16 = 48
AD = √48 = 4√3 (представили 48, как 16*3 и вынесли корень из 16)
Теперь найдём площадь прямоугольника по формуле: S = ab
S = CD * AD = 4√3 * 4 = 16√3
ответ: 16√3
2. Дан квадрат и его диагональ
Рассмотрим треугольник ABC, где угол B - прямой по правилу квадрата.
Значит треугольник ADC - прямоугольный. Катеты в нём равны, можем обозначить за х
Получается: AB = BC = x
Их можно найти по теореме Пифагора:
AB^2 + BC^2 = AC^2
x^2 + x^2 = 16
2x^2 = 16
x^2 = 8
x = √8 = 2√2 (представили 8, как 4*2 и вынесли корень из 4)
Обе эти стороны равны 2√2, можем найти площадь квадрата по формуле S = a² = (2√2)² = 4 * 2 = 8
ответ: 8
Оставляю эти 2, дальше время поджимает
Пусть треугольник АВС, где В вершина, а А,С вершины при основании. ВН высота, АМ- биссектриса, а точка К, точка пересечения биссектрисы и высоты.
Определим длину высоты ВН.
ВН = ВК + КН = 7 + 3 = 10 см.
Так как АМ биссектриса угла ВАС, то АК так же биссектриса угла ВАН.
Тогда, по свойству биссектрисы угла: АВ / ВК = АН / КН.
АВ / 7 = АН / 3.
АВ / АН = 7 / 3
Пусть длина отрезка АН = 3 * Х см, тогда АВ = 7 * Х см.
Из прямоугольного треугольника АВН, по теореме Пифагора:
ВН2 = АВ2 – АН2.
100 = 49 * Х2 – 9 * Х2.
Х2 =2,5.
Х=√ 2,5
Тогда АВ = ВС = 7 √2,5
АН = 3√2,5.
Так как АВС равнобедренный, то СН = АН .
Тогда АС = 6√2,5см.
Объяснение: