Сечение, проходящее через DP --это треугольник, в котором одна сторона уже задана, осталось найти третью вершину)) эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ))) можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани... DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE в плоскости АСЕ (это диагональное сечение параллелепипеда))) строим параллельную СЕ прямую... или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую
эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ)))
можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани...
DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE
в плоскости АСЕ (это диагональное сечение параллелепипеда)))
строим параллельную СЕ прямую...
или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую
L, M - середины сторон.
Продлим LM до пересечения с AB в точке K
BL=LC (по условию)
∠KBL=∠C (накрест лежащие при AB||CD)
∠KLB=∠MLC (вертикальные)
△KBL=△MCL (по стороне и прилежащим углам) => KL=LM
△KAM: AL - биссектриса (по условию) и медиана, следовательно и высота, ∠ALM=90.
Продлим LM до пересечения с AD в точке N
Рассуждая аналогично, △MDN=△MCL => MN=LM =>
△NAL: AM - биссектриса/медиана, следовательно и высота, ∠AMN=90
Из точки A можно провести только один перпендикуляр к прямой LM. Следовательно данная конфигурация невозможна.