х=3, у=3
Объяснение:
Итак, 13я задача при условии, что х у параллельны основаниям трапеции.
Рассмотрим △ACD и △OCN. У них угол при вершине С общий, а, например, <CON=<CAD как соответственные, значит △ACD ~ △OCN. =>
1) ON/AD=OC/AC.
Треугольники △AOD и △COB, образованные отрезками диагоналей и основаниями трапеции, подобны - свойство трапеции. =>
2) OC/AO=BC/AD
3) AO=AC-OC Подставим в 2):
OC/(AC-OC)=4/12=1/3
3*OC=AC-OC
4*OC=AC
OC/AC=1/4
Подставим это отношение в 1):
ON/12=1/4
ON=12*1/4=3
Значит у=3
Таким же образом из подобия △AOD ~ △COB выписываем OB/OD=BC/AD; а из подобия △ABD ~ △MBO выписываем OM/AD=OB/BD.
OD=BD-OB
Подставляем всё точно так же.
OB/(BD-OB)=4/12=1/3
OB/BD=1/4
OM/12=1/4
OM=x=3
1.Угол, вершина которого лежит в центре окружности называется
А) центральным;
2. Угол, вершина которого лежит на окружности называется
Б) вписанным;
3. Вписанный угол равен
В) половине дуги на которую он опирается.
4. Центральный угол равен
Б) дуге, на которую он опирается;
5. Чему равен вписанный угол, опирающийся на дугу в 120°
Б) 60°;
6. Чему равен центральный угол, опирающийся на дугу в 40°
В) 40°
7. Чему равен вписанный угол, опирающийся на дугу в 100°
А) 50°;
8.Чему равен центральный угол, опирающийся на дугу в 80°
Б) 80°;
Запишите ответ (задания 9-12):
9. Найдите <DEF, если градусные меры дуг DE и EF равны 150° и 68° соответственно.
<DEF опирaтeся на дугу = 360°-(DE + EF)=360°-( 150° + 68° ) =142°.
<DEF - вписанный угол,
<DEF=1/2×142°=71°
10. Найдите <KOM, если известно, что градусная мера дуги MN равна 124°, а градусная мера дуги KN равна 180°. Точка O — центр окружности.
υMK=υKN-υMN=180°-124°=56°
<KOM - центральный угол,<KOM=56°
11. Треугольник ABC вписан в окружность с центром в точке O. Найдите градусную меру угла C треугольника ABC, если угол AOB равен 48°.
<C - вписанный угол,= половине центральнoго углa AOB.
<C=1/2<AOB=1/2*48°=24°
12. Точка О — центр окружности, <AOB = 84° (см. рисунок). Найдите величину угла ACB (в градусах). Дай рисунок.
х=3, у=3
Объяснение:
Итак, 13я задача при условии, что х у параллельны основаниям трапеции.
Рассмотрим △ACD и △OCN. У них угол при вершине С общий, а, например, <CON=<CAD как соответственные, значит △ACD ~ △OCN. =>
1) ON/AD=OC/AC.
Треугольники △AOD и △COB, образованные отрезками диагоналей и основаниями трапеции, подобны - свойство трапеции. =>
2) OC/AO=BC/AD
3) AO=AC-OC Подставим в 2):
OC/(AC-OC)=4/12=1/3
3*OC=AC-OC
4*OC=AC
OC/AC=1/4
Подставим это отношение в 1):
ON/12=1/4
ON=12*1/4=3
Значит у=3
Таким же образом из подобия △AOD ~ △COB выписываем OB/OD=BC/AD; а из подобия △ABD ~ △MBO выписываем OM/AD=OB/BD.
OD=BD-OB
Подставляем всё точно так же.
OB/(BD-OB)=4/12=1/3
OB/BD=1/4
OM/12=1/4
OM=x=3
Объяснение:
1.Угол, вершина которого лежит в центре окружности называется
А) центральным;
2. Угол, вершина которого лежит на окружности называется
Б) вписанным;
3. Вписанный угол равен
В) половине дуги на которую он опирается.
4. Центральный угол равен
Б) дуге, на которую он опирается;
5. Чему равен вписанный угол, опирающийся на дугу в 120°
Б) 60°;
6. Чему равен центральный угол, опирающийся на дугу в 40°
В) 40°
7. Чему равен вписанный угол, опирающийся на дугу в 100°
А) 50°;
8.Чему равен центральный угол, опирающийся на дугу в 80°
Б) 80°;
Запишите ответ (задания 9-12):
9. Найдите <DEF, если градусные меры дуг DE и EF равны 150° и 68° соответственно.
<DEF опирaтeся на дугу = 360°-(DE + EF)=360°-( 150° + 68° ) =142°.
<DEF - вписанный угол,
<DEF=1/2×142°=71°
10. Найдите <KOM, если известно, что градусная мера дуги MN равна 124°, а градусная мера дуги KN равна 180°. Точка O — центр окружности.
υMK=υKN-υMN=180°-124°=56°
<KOM - центральный угол,<KOM=56°
11. Треугольник ABC вписан в окружность с центром в точке O. Найдите градусную меру угла C треугольника ABC, если угол AOB равен 48°.
<C - вписанный угол,= половине центральнoго углa AOB.
<C=1/2<AOB=1/2*48°=24°
12. Точка О — центр окружности, <AOB = 84° (см. рисунок). Найдите величину угла ACB (в градусах). Дай рисунок.