1) 18см
2) 12см
3) 6см
4) 27см.
Найдите стороны четырехугольника.
Объяснение:
Пусть длина 1 стороны - х см.
Запишем % в десятичном виде:
50%=50/100=0,5
150%=150/100=1,5
1 сторона - х см
2 сторона - 2/3х
3 сторона - (2/3х)×0,5
4 сторона - 1,5х
Р (периметр) - 63 см
1)Составим уравнение:
х+2/3х+(2/3х)×0,5+1,5х=63
х+2/3х+(2/3)×(1/2)х+3/2х=63
х+2/3х+1/3х+3/2х=63 | ×6
6х+4х+2х+9х=63×6
21х=378
х=378:21
х=18 см первая сторона;
2) 18×2/3=12 (см) вторая сторона;
3) 12×0,5=6 (см) третья сторона;
4) 18×1,5=27 (см) четвертая чторона.
1 сторона 18 см
2 сторона 12 см
3 сторона 6 см
4 сторона 27 см.
1. Если внутренние накрест лежащие углы равны, то прямые параллельны.
∠70°=∠70° ⇒
a║b
2. Если сумма внутренних односторонних углов равна 180, то то прямые параллельны.
∠110+∠70=180°⇒
c║d
3. Если соответственные углы равны, то прямые параллельны.
∠a=∠a
MD║|NK
4. Если соответственные углы равны, то прямые параллельны.
∠90=∠90
m║n
5. Если внутренние накрест лежащие углы равны, то прямые параллельны.
BC║AD
AB║CD
6. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠EFL=∠FLK ⇒ EF║LK
∠EKF=∠KEL⇒ FK║EL
7. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠NPM=∠PMQ ⇒NP║MQ
∠NMP=∠MPQ⇒NM║PQ
8. ΔAOB=ΔCOD (по двум сторонам и углу между ними)⇒
∠BAO=∠ODC если внутренние накрест лежащие углы равны, то прямые параллельны
9. ΔOXY=ΔOYZ по трем сторонам ⇒
∠XYO=∠YOZ ⇒ XY║OZ
∠XOY=∠OYZ⇒ OX║YZ
10.
UR║ST (внутренние накрест лежащие углы равны)
ΔRUO=ΔOST (по стороне и двум прилежащим к ней углам) ⇒
∠TRU=∠STR ⇒ RS║UT
1) 18см
2) 12см
3) 6см
4) 27см.
Найдите стороны четырехугольника.
Объяснение:
Пусть длина 1 стороны - х см.
Запишем % в десятичном виде:
50%=50/100=0,5
150%=150/100=1,5
1 сторона - х см
2 сторона - 2/3х
3 сторона - (2/3х)×0,5
4 сторона - 1,5х
Р (периметр) - 63 см
1)Составим уравнение:
х+2/3х+(2/3х)×0,5+1,5х=63
х+2/3х+(2/3)×(1/2)х+3/2х=63
х+2/3х+1/3х+3/2х=63 | ×6
6х+4х+2х+9х=63×6
21х=378
х=378:21
х=18 см первая сторона;
2) 18×2/3=12 (см) вторая сторона;
3) 12×0,5=6 (см) третья сторона;
4) 18×1,5=27 (см) четвертая чторона.
1 сторона 18 см
2 сторона 12 см
3 сторона 6 см
4 сторона 27 см.
Объяснение:
1. Если внутренние накрест лежащие углы равны, то прямые параллельны.
∠70°=∠70° ⇒
a║b
2. Если сумма внутренних односторонних углов равна 180, то то прямые параллельны.
∠110+∠70=180°⇒
c║d
3. Если соответственные углы равны, то прямые параллельны.
∠a=∠a
MD║|NK
4. Если соответственные углы равны, то прямые параллельны.
∠90=∠90
m║n
5. Если внутренние накрест лежащие углы равны, то прямые параллельны.
BC║AD
AB║CD
6. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠EFL=∠FLK ⇒ EF║LK
∠EKF=∠KEL⇒ FK║EL
7. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠NPM=∠PMQ ⇒NP║MQ
∠NMP=∠MPQ⇒NM║PQ
8. ΔAOB=ΔCOD (по двум сторонам и углу между ними)⇒
∠BAO=∠ODC если внутренние накрест лежащие углы равны, то прямые параллельны
AB║CD
9. ΔOXY=ΔOYZ по трем сторонам ⇒
∠XYO=∠YOZ ⇒ XY║OZ
∠XOY=∠OYZ⇒ OX║YZ
10.
UR║ST (внутренние накрест лежащие углы равны)
ΔRUO=ΔOST (по стороне и двум прилежащим к ней углам) ⇒
∠TRU=∠STR ⇒ RS║UT