У правильной треугольной пирамиды основание - равносторонний треугольник, высота опускается в его центр. Смотри рисунок. Слева показана сама пирамида, справа ее основание. Из прямоугольного треугольника SDO ясно, что OD = L*sin α Но мы знаем, что точка О - центр треугольника - делит высоту в отношении 1 : 2, то есть CD = 3*OD = 3L*sin α С другой стороны, мы знаем, что в равностороннем треугольнике высота CD = a*√3/2, где a = AB = AC = BC - сторона треугольника. Получаем a*√3/2 = 3L*sin α a = 6/√3*L*sin α = 6√3/3*L*sin α = 2√3*L*sin α Площадь боковой стороны S(ABS) = S(ACS) = S(BCS) = a*L/2 = 2√3*L*sin α*L/2 = √3*L^2*sin α Площадь всей боковой поверхности пирамиды S(бок) = 3*S(ABS) = 3√3*L^2*sin α
Слева показана сама пирамида, справа ее основание.
Из прямоугольного треугольника SDO ясно, что OD = L*sin α
Но мы знаем, что точка О - центр треугольника - делит высоту в отношении 1 : 2, то есть
CD = 3*OD = 3L*sin α
С другой стороны, мы знаем, что в равностороннем треугольнике
высота CD = a*√3/2, где a = AB = AC = BC - сторона треугольника.
Получаем
a*√3/2 = 3L*sin α
a = 6/√3*L*sin α = 6√3/3*L*sin α = 2√3*L*sin α
Площадь боковой стороны
S(ABS) = S(ACS) = S(BCS) = a*L/2 = 2√3*L*sin α*L/2 = √3*L^2*sin α
Площадь всей боковой поверхности пирамиды
S(бок) = 3*S(ABS) = 3√3*L^2*sin α
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².